

Rotational Analysis of the First Negative Band Spectrum of Oxygen

Thomas E. Nevin

Phil. Trans. R. Soc. Lond. A 1938 237, 471-507

doi: 10.1098/rsta.1938.0014

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[471]

ROTATIONAL ANALYSIS OF THE FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

By THOMAS E. NEVIN

University College, Dublin

(Communicated by A. W. Conway, F.R.S.—Received 6 April 1938)

[Plates 7, 8]

Introduction

The first negative bands of oxygen, $\lambda 6856$, (0, 2), $\lambda 6419$, (0, 1), $\lambda 6026$, (0, 0), λ 5632, (1, 0) and λ 5295, (2, 0) appear in the negative glow when a discharge is passed through oxygen at low pressure. Under low dispersion the bands appear very diffuse, but each exhibits on the long-wave side a well-defined head degraded to the violet, to which the wave-lengths given above refer, accompanied by a less well-defined head about 30 cm.⁻¹ towards shorter wave-lengths. Though they have no state in common with the ultra-violet negative bands they are generally attributed to the O₂⁺ molecule.

References to earlier work are given by Frerichs (1926), who excited the spectrum with high intensity in a hollow-cathode discharge in oxygen and photographed it in the first order of a 21 ft. grating. In each band he found two branches, one of which formed the sharp head referred to above. On the basis of a combination relation between the branches he assigned vibrational quantum numbers to the bands. Bands additional to those given above have been discovered by Mulliken and Stevens (1933) and Bozoky and Schmid (1935). It was found by the latter workers that the bands given above, with the exception of $\lambda 6856$, were not single but formed the first band in each of the progressions v'-v''=-1, 0, +1, +2, respectively. They excited the spectrum by a high-frequency discharge which seemed to have a lower effective temperature than the hollow-cathode discharge, so that the rotational structure was not well developed and the later bands in each progression were not masked by the overlapping rotational structure of the first band.

Very little is known about the rotational structure of the bands. From a study of the probable electronic configurations of the O₂⁺ molecule, Mulliken (1932) considered that they might be due to a ${}^4\Sigma \rightarrow {}^4\Pi$ transition. Bozoky and Schmid (1935) considered their observations on the Zeeman effect consistent with a doublet or quartet structure.

Vol. CCXXXVII. A. 783 (Price 6s.)

[Published 23 November 1938

472

THOMAS E. NEVIN ON ROTATIONAL ANALYSIS OF THE

EXPERIMENTAL

The spectrum was excited by a discharge through helium mixed with a small amount of oxygen in the pyrex discharge tube shown in fig. 1. The electrodes were of aluminium, 25 cm. long, external diameter 3 cm. The capillary was 50 cm. long with an internal diameter of 7 mm. The oxygen prepared by heating potassium permanganate in a side tube was stored at a pressure of a few cm. of mercury in contact with phosphorus pentoxide in the bulb A, attached to one limb of the discharge tube with an internal seal which prevented the gas from entering the discharge tube except through the needle valve V. The tap T allowed the oxygen supply to be cut off without altering the adjustment of the valve. The tube was kept cool by immersing it up to the level of the bulb in a tank of running water.

Fig. 1. The discharge tube.

It was found that the oxygen introduced into the discharge tube disappeared fairly rapidly, presumably combining with the electrodes. By proper adjustment of the valve, the rate of inflow could be adjusted so that the total amount in the tube remained very nearly constant, and the tube would run for about 2 hr. without attention. The pressure of helium in the tube was 3–4 mm. No attempt was made to measure the pressure of the oxygen, but it was probably about 0·1 mm. The amount was adjusted until the bands appeared with maximum intensity, judged by visual observation with a hand spectroscope. Under these conditions the discharge had a greyish yellow colour. The exciting current was between 0·8 and 1·2 amp., obtained from a 10 kVA transformer. With a current of 1·2 amp. the power dissipated in the tube was about 1·8 kW. The helium was pumped away about every 2 hr. during an exposure.

The bands were photographed in the second order of a 21 ft. grating in an Eagle mounting, which in the region in question has a dispersion of about 1.22 A/mm. The bands $\lambda 6419$, 6026, 5632 and 5295 were photographed, though the analysis of

λ 5295 is not given in the present paper. With a plate-holder 75 cm. long two bands could be photographed at one time. The plates used were Ilford Astra III for the green and Ilford Special Rapid Panchromatic for the red, the latter hypersensitized in the usual manner by bathing in dilute ammonia. In the bright second order of the grating the exposures ranged from 5 to 12 hr. A resolving power of 180,000 for suitable lines was actually reached, slightly exceeding the theoretical resolving power of the grating (173,000). No unresolved groups of lines appeared on the plates.

An iron comparison spectrum was used and the international standard lines were used as far as possible in measuring the plates. However, it was found impossible to avoid small shifts of the order 0.02 A between the two spectra. Owing to the great difference between the two sources it was very difficult to be sure the grating was illuminated in exactly the same manner for the two spectra. A single plate of the λ 6026 and λ 6419 bands was taken with a neon comparison produced by a small trace of neon in the tube during the exposure, so that there was no possibility of a shift between the two spectra. The wave-lengths were calculated from this plate by a cubic formula. The wave-lengths obtained from the iron plates were reduced to agree with those obtained from the neon plate by adding or subtracting a small constant amount. When this had been done there remained no systematic difference between the wavelengths deduced from the various plates. In the case of the $\lambda 5632$ band, a plate was obtained on which a couple of neon lines appeared, the wave-lengths of which agreed with the accepted values to 0.005 A. The remaining plates were reduced to agree with this. Most of the lines have been measured on three plates, and it is considered that the absolute values of the wave-lengths are correct to at least 0.01 A, while the accuracy of the relative values in the case of sharp lines should be a good deal higher. The intensities were estimated from the plates during measurement and checked from largescale enlargements of the bands.

On account of the enormous over-exposure of the line, He λ 5876, there was considerable blackening of the plates of the λ 6026 band, sufficient to obscure faint lines below λ 5910 and making it impossible to follow the band at all below λ 5890, though it certainly extends below this point. Some lines in this region too may be obscured by ghosts.

Structure of ${}^4\varSigma \to {}^4\varPi$ bands

The analysis shows that the bands are due to a transition ${}^4\Sigma \rightarrow {}^4\Pi$. As this appears to be the first time this type of transition has been observed it seems advisable to consider briefly the structure the bands may be expected to show.

In Σ states the component, Λ , of the electronic angular momentum along the internuclear axis is zero, and the resultant electron spin, S, is coupled loosely to the rotational axis of the molecule. In a ${}^4\Sigma$ state $S=\frac{3}{2}$, and each rotational level consists of four closely spaced components corresponding to $J=K+\frac{3}{2},\ J=K+\frac{1}{2},\ J=K-\frac{1}{2},$

473

 $J=K-\frac{3}{2}$, where J is the quantum number corresponding to the total angular momentum of the molecule and K is the quantum number corresponding to the angular momentum exclusive of spin. These four components are denoted respectively $F_1(K+\frac{3}{2}),\ F_2(K+\frac{1}{2}),\ F_3(K-\frac{1}{2}),\ F_4(K-\frac{3}{2})$. The energy levels are given by the expression

$$F_i(J) = F_e + G(v) + B_v K(K+1) + D_v K^2(K+1)^2 + f_i(K, J - K).$$
 (1)

For a given vibrational level $F_e + G(v)$ is constant. The term $f_i(K, J-K)$ takes four values corresponding to the four values of J for a given K and consists of two parts, the first arising from the interaction of K and S and the second from the mutual interaction of the individual electron spins. The values calculated by Budó (1937) by a method due to Kramers are as follows:

$$f_{1}(K) = -\frac{3}{2}\epsilon \left(1 - \frac{3}{2K+3}\right) + 3\gamma K,$$

$$f_{2}(K) = +\frac{3}{2}\epsilon \left(1 + \frac{3}{2K+3}\right) + \gamma (K-3),$$

$$f_{3}(K) = +\frac{3}{2}\epsilon \left(1 - \frac{3}{2K-1}\right) - \gamma (K+4),$$

$$f_{4}(K) = -\frac{3}{2}\epsilon \left(1 + \frac{3}{2K-1}\right) - 3\gamma (K+1).$$

$$(2)$$

When $\Lambda > 0$ we get Hund's case a when S is coupled to the internuclear axis and case b when it is coupled to the rotational axis. In case a the energy is given by the expression

$$F(J) = F_{s} + G(v) + A\Lambda\Sigma + B_{s}\{S(S+1) - \Omega^{2} - \Sigma^{2}\} + B_{s}J(J+1) + D_{s}J^{2}(J+1)^{2}.$$
 (3)

Here Σ is the component of S along the internuclear axis and $\Omega = |\Lambda + \Sigma|$. J takes the values $\Omega, \Omega + 1, \Omega + 2, \ldots$ For a given vibrational level $A\Lambda\Sigma + B_v\{S(S+1) - \Omega^2 - \Sigma^2\}$ represents the variable part of the electronic energy. In a ${}^4\Pi$ state, $\Lambda = 1$ and Σ takes the values $\pm \frac{3}{2}$, $\pm \frac{1}{2}$, so the molecular multiplet consists of four components denoted ${}^4\Pi_{-\frac{1}{2}}$, ${}^4\Pi_{\frac{1}{2}}$, ${}^4\Pi_{\frac{3}{2}}$, ${}^4\Pi_{\frac{5}{2}}$, where the suffix denotes $\Lambda + \Sigma$.

In practice it is often found that the observed terms approximate to case a for the lower rotational levels and gradually approach case b for the higher levels. In case b we denote the levels corresponding to a given K as $F_1(K+\frac{3}{2})$, $F_2(K+\frac{1}{2})$, $F_3(K-\frac{1}{2})$, $F_4(K-\frac{3}{2})$ as in the ${}^4\Sigma$ state.

In the intermediate case the notation of either case a or case b can be used. If the state is normal F_4 corresponds to ${}^4\Pi_{\frac{5}{2}}$ and F_1 to ${}^4\Pi_{-\frac{1}{2}}$, while if the state is inverted the correspondence is reversed. The energy expressions for an intermediate ${}^4\Pi$ state have been worked out by Brandt (1936) and slightly less accurate expressions have been given by Budó (1937). To a sufficiently high degree of approximation for the present

475

purpose Brandt's expressions may be written as follows, omitting a common constant term:

$$F_4(J) = B_v \bigg[J(J+1) + \frac{3}{2} \Big\{ y_1 + 4J(J+1) + \frac{23}{9} + \frac{2\delta}{9} \Big\}^{\frac{1}{2}} - 2 \frac{y_2 - 2J(J+1)}{y_1 + 4J(J+1)} \bigg] \\ + D_v(J + \frac{3}{2})^2 (J + \frac{5}{2})^2,$$

$$F_3(J) = B_v \bigg[J(J+1) + \frac{1}{2} \{ y_1 + 4J(J+1) - 5 - 2\delta \}^{\frac{1}{2}} + 2 \frac{y_2 - 2J(J+1)}{y_1 + 4J(J+1)} \bigg] \\ + D_v(J + \frac{1}{2})^2 (J + \frac{3}{2})^2,$$

$$F_2(J) = B_v \bigg[J(J+1) - \frac{1}{2} \{ y_1 + 4J(J+1) - 5 - 2\delta \}^{\frac{1}{2}} + 2 \frac{y_2 - 2J(J+1)}{y_1 + 4J(J+1)} \bigg] \\ + D_v(J - \frac{1}{2})^2 (J + \frac{1}{2})^2,$$

$$F_1(J) = B_v \bigg[J(J+1) - \frac{3}{2} \Big\{ y_1 + 4J(J+1) + \frac{23}{9} + \frac{2\delta}{9} \Big\}^{\frac{1}{2}} - 2 \frac{y_2 - 2J(J+1)}{y_1 + 4J(J+1)} \bigg] \\ + D_v(J - \frac{3}{2})^2 (J - \frac{1}{2})^2,$$
 where $y_1 = Y(Y-4)$ with $Y = \frac{A}{B_v}$, $y_2 = Y(Y-1)$ and $\delta = \frac{6Y(Y+4)}{2y_1 + 8J(J+1) + 56}.$

To each of the above expressions it is necessary to add a term $\Phi_c(\Sigma, J)$ or $\Phi_d(\Sigma, J)$ which arises from the interaction between the magnetic field due to the rotation of the molecule and the field along the internuclear axis. This causes each of the rotational levels to become double, one level of the doublet being classified as a c level and the other as a d level. This doubling of the rotational levels is spoken of as Λ -type doubling.

In a homonuclear molecule, on account of its symmetry properties, alternate levels have different statistical weights. When, as in O or O+, the nuclear angular momentum is zero, alternate rotational levels are missing in the ${}^4\Sigma$ state and alternate c and d levels in the ${}^4\Pi$ state. Fig. 2 shows a diagram of the transition ${}^4\Sigma \rightarrow {}^4\Pi$ for O_2^+ . In case a the branches are given by the selection principle $\Delta J = 0, \pm 1$, so that altogether 48 branches are to be expected. In case b, in addition, $\Delta K = 0, \pm 1$, so that the total number of branches is reduced to 27. No attempt has been made to illustrate the differing intensities of the branches on the diagram. The combination relations which give certain term differences in the initial and final states can be read off from the heads of the columns in Tables XIII-XIX. Owing to the fact that alternate lines are missing in each branch only alternate values of these differences can be derived from the analysis.

Analysis of the bands

The appearance of the bands under high dispersion can be seen from Plates 7, 8, which show an enlargement of part of the (0, 0) band. Examination of the spectrum on large-scale enlargements showed that of the two branches found by Frerichs, each

line of the one which did not form the head was accompanied on the low-frequency side by a fainter line at a distance of about 0.45 cm.⁻¹. It was also noticed that the second head was formed by two branches, corresponding members of which had this same separation. In the (0, 0) and (0, 1) bands the lines running up to the head coincided exactly with the returning lines. This blending did not occur in the (1, 0) band

Fig. 2. Structure of the rotational levels in the initial ${}^4\Sigma$ state and final ${}^4\Pi$ state of the first negative bands of oxygen. The diagram shows the transitions to be expected in case a. The lightly drawn horizontal lines correspond to the missing levels.

which enabled the distance between the origins of the two components to be estimated at approximately 50 cm.⁻¹. To find additional branches it was necessary to adopt the tedious procedure of marking off on the enlargements lines which satisfied the condition that the second wave number difference between consecutive lines should be approximately constant. With so many lines close together the possibility that this procedure might give rise to spurious branches could not be ignored. On this account the existence of a branch could not be regarded as definitely established till it had been found in all three bands. In this way two branches with a separation of 0.45 cm.⁻¹

were found starting from the same sub-origin as Frerichs' two and additional branches starting from the second sub-origin. A search next showed a number of branches commencing at a point 50 cm.⁻¹ above the second sub-origin and five strong branches commencing at a point 50 cm.⁻¹ higher still. In a number of cases the branches seemed to be in pairs with the separation already noticed.

The existence of four components established the quartet structure of the band, and it seemed reasonable to assume, in accordance with Mulliken's suggestion, that the transition was ${}^4\Sigma \rightarrow {}^4\Pi$. The separation of 0.45 cm. ${}^{-1}$ should then be connected with the spin fine structure of the ${}^4\Sigma$ state. From this point a search for additional branches and an attempt to identify those already found by means of the combination relations were carried on simultaneously. Fortunately, in many cases the probable J values of the lines could be established directly from the fact that the branches could be followed close up to the origin. When the analysis had been partly completed Budó's paper (1937) appeared confirming tentative conclusions on the structure of the ${}^4\Sigma$ state. With the confidence thus inspired it did not take long to identify the remaining branches found empirically and to calculate the positions of the lines of the weak branches with the aid of the combination relations.

The observed structure of the bands agrees with that to be expected for a ${}^4\Sigma \rightarrow {}^4\Pi$ transition with alternate lines missing in each branch. It will be shown in the next section that the initial level $F_1'(K)$ is blended with $F_4'(K)$ and $F_2'(K)$ with $F_3'(K)$. The effect of this is to reduce the total number of branches from 48 to 40, all of which have been observed in the (1, 0) and (0, 1) bands. The absolute J values of the lines of the branches were checked in the usual manner.

The wave number and intensities for the lines of the (0, 0), (1, 0) and (0, 1) bands are given in Tables I-XII. The assignment of the wave numbers to the branches is checked by the combination relations given in Tables XIII-XIX. To save space the $\Delta_1 F''(J+\frac{1}{2})$ values are given for the (0, 0) band only. On account of the complex structure of the bands blends of two lines and of more than two lines in some cases are common. The superscript following the wave number indicates the number of times the particular line has been used in the analysis.

For the observed branches, which, owing to the coincidence of $F_2(K)$ with $F_3(K)$, are really blends of two branches, the lines are counted as having been used once on that account. In a few cases the exact end-point of the branches could not be established, as strong lines of other branches fell in the calculated position. Up to the point at which the second band commences in each of the sequences of which the three analysed bands form the first members the analysis includes all but a very few lines of low intensity. Beyond this point unassigned lines nearly all of low intensity become more numerous. It seems reasonable to assume that these lines belong to the later bands in the sequences. The intensities of some of the lines in the analysed bands may be affected by blending with lines of these faint bands. In the (0, 0) band the intensities of some lines below λ 5920 may be affected by blending with faint ghosts of He λ 5876.

Table I. Wave numbers of lines in the $(0,\,0)$ band. $^4\Sigma \to ^4\varPi_{-\frac{1}{2}}$ transition

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

THOMAS E. NEVIN ON ROTATIONAL ANALYSIS OF THE **47**8

478	THOMAS E. NEVIN ON ROTATIONAL ANALYSIS OF THE
R_4	16649·80³ 6 _a 666·19² 4 683·44¹ 2 701·67¹ 2 720·93¹ 3 741·30¹ 6 762·72¹ 4 785·34¹ 4 809·12¹ 3 860·28¹ 5 860·28¹ 5
. Q4	16611.76 ¹ 1 621.50 ³ 6 632.24 ¹ 3 643.88 ¹ 4 656.52 ¹ 5 670.18 ² 7 684.81 ⁶ 25 775.70 ² 6 775.70 ² 6 797.52 ³ 106 820.51 ¹ 4 844.81 ¹ 5 870.36 ² 4 897.23 ¹ 4 925.36 ¹ 1
${}^{arphi}R_{34}$	16603·16¹ 2 612·16¹ 3 621·92² 5 632·67¹ 3 644·32¹ 3 656·94¹ 4 670·67² 8 685·23³ 12 701·15¹ 2 718·08¹ 2 736·31⁴ 10 755·54¹ 4 776·18² 6 797·95² 9 820·92¹ 3 845·28¹ 3 845·28¹ 1
P_4	16601.273 5 606.531 00 612.611 3 619.691 2 627.771 3 636.911 4 671.021 4 671.021 4 671.021 4 671.021 3 733.311 3
$^{P}R_{24}$ and $^{P}Q_{34}$	16594-201 1† 597-501 1† 601-741 4† 16601-273 606-942 8 606-531 613-061 7 612-611 620-121 7 619-691 628-211 7 627-771 647-571 6 647-142 658-922 5 658-533 671-501 5 671-021 700-101 2 699-662 716-301 2 715-861 733-823 8 733-311
$^{o}R_{14}$	16588.84^3 5 588.46^1 0 588.84^3 5 588.84^3 5
$^{o}Q_{24}$ and $^{o}P_{34}$	16590-73 ² 5* 589-29 ² 6* 588-84 ³ 5* 589-29 ² 6 590-73 ² 5 606-94 ² 8 613-81 ¹ 3 621-92 ² 5 631-15 ¹ 2
$^{N}Q_{14}$	$16578\cdot41^{1}$ 00 $573\cdot34^{1}$ 3 $569\cdot34^{1}$ 0 d $566\cdot23^{1}$ 0 $563\cdot99^{1}$ 0
$^{N}\!P_{24}$	$16578.91^{1} 00$ $573.83^{1} 1$ $569.74^{1} 0$ $566.63^{1} 0d$ $564.46^{1} 1$ $563.49^{2} 1$ $563.49^{2} 1$ $563.49^{2} 1$
$^{M}P_{14}$	$16565 \cdot 41^{1}$ 1
$J+rac{1}{2}$	1984797888888888888888888888888888888888

* ${}^{o}Q_{24}$ only. Corresponding lines in ${}^{o}P_{34}$ not observed. $\dagger {}^{p}P_{Q34}$ only. Corresponding lines in ${}^{p}R_{24}$ not observed. \dagger The Q_4 branch could not be followed beyond this point owing to blackening produced by He $\lambda 5876$.

 ${}^{P}Q_{23}$ only. Corresponding lines in P_3 not observed. \dagger Q3 only. Corresponding lines in ${}^{q}R_{23}$ not observed. Branches could not be followed beyond this point owing to blackening produced by He $\lambda 5876$. Coincides with ghost of He $\lambda 5876$.

* ++~

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Table II. Wave numbers of lines in the (0, 0) band.

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 $^4\Sigma
ightarrow ^4\varPi_{_{1\over 2}}$ transition

Vol. CCXXXVII. A.

					Т. Т																							#10
	1	.71	25	9.	6.1			က	4	ಣ	G		က		c													
$^{S}R_{43}$	000 00001	10009-09-	$684.81^{6}\ 25$	701.53^{1}	719.25^1	738.912	-TC-001	758.63^{1}	780.24^{1}	$803{\cdot}15^1$	897.341	HO 170	852.84^{1}	879-728	907:701													
	44	70	7.	G	3	9	7	ıσ			າວ	4	4		49	4	೧೦		4	23	+ +							
RQ_{43}	$16652 \cdot 25^2$	661.90^2	672.74^1	20 910.709	, To.∓on	$698 \cdot 15^1$	712.80^{1}	728.70^{1}	748.011	140.31	764.40^{1}	784.24^{3}	805.371	900	827.85^{2}	851.61^1	876.75^2) (903-152	930.90^{1}	960.00^{1}							
R_3							16713.26^{1} 0	$729.09^{1} 00$	748.912		764.83^{1} 2	ı	805.801 2		828.36^{2} 4b	852.12^{2} 3d	877.17^{1} 1		903:56- 4	$931 \cdot 36^{1} 2$	960.49^{1} 4_{+}^{+}							
	-	-	_	4	ಣ	4	Н)	55	4	က	4	1 4	ب	70	c.	ı c	<i>3</i>	2d	_	c	1 0	71	_	4	•			
$^{Q}P_{43}$	18848.501	.sc.0#001	651.78^{1}	$658{\cdot}11^1$	665.71^1	674.581	00 100	$684.81^{\circ}25$	$696 \cdot 19^{1}$	708.97^{1}	793.07^{2}		738.48	$755 \cdot 15^2$	773.391		192.12	813.42^2	835.78^{1}	850.001	00000	883.90	$910{\cdot}23^{\scriptscriptstyle 1}$	937.80^{1}				
123	, +	<u> </u>	$\downarrow q \downarrow$	4	4	೧೯	· •	7	9	4	rC) ì	c c	4	4	0 70	90	уĊ	9	ν	· ·	ب	ಣ	က				
Q_3 and ${}^{Q}R_{23}$	16647.142 9+	_#T./#00T	$652 \cdot 25^2 \ 4d^\dagger$	658.53^{3}	$666 \cdot 19^2$	675.07^{1}		680.23° 12	696.65^{1}	709.42^{1}	723.51^{2}		738-94	755.69^2	773.83^{1}	409.109	789.182	814.00^{1}	$836 \cdot 19^1$	850.641	000 OH	884.40	$910{\cdot}66^1$	$938 \cdot 24^{1}$				
		-		PE		-	9	0	ĸ		_	8																
$^{P}R_{13}$	$16639 \cdot 68^2$	$639{\cdot}09^1$	639.68^2	641.452	OF 150	644.56^{1}	649.02^{3}	654.81^{1}	661.002	08.100	670.18^{2}	679.97^{1} 00																
23	% 7	*	در *			ب	pg	9	હ		x	4	7		70	œ	∞		4	4	7	œ		N	3d	က	4	_
P_3 and $^PQ_{23}$	16640.11^{2}	639.51^2	640.11^{2}	641.951	00 TEO	$645 \cdot 11^{1}$	649.51^2	655.28^{1}	669.291	70.700	670-672	680.42^{1}	691.46^{2}	4	703.87^{1}	717.65^2	732.79^{2}	6	749.25	$767 \cdot 12^{1}$	786.32^{2}	806.033		828-80	$852 \cdot 12^2$	876.75^{2}	902.77^{1}	930.03^{1}
	િ	•	4	4	5	ıc) 1	O	5	4	4	۱ ،	30	_	9		#											
0013	16624.162	01.∓0001	628.92^{2}	624.98^2	622.36^2	691.03^{2}		621-03	622.36^2	624.98^2	628.92^{2}	1 7 60	034.10-	640.91^{1}	649.023	2	008.99											
	ଟ	•	4	4	χÇ	9) (0	າວ	4	4	٠	70	3d	pg	14	ဂ	62	p_0		3							
op_{23}	18634.672	10.±000T	629.36^{2}	625.41^2	$622{\cdot}79^2$	621.50^{3}		621.50	622.79^2	$625{\cdot}41^2$	629.36^{2}	2 G	034-672	641.45^2	649.51^{2}	25 020	-76.QCO	669.69^{2}	681.78^{1}	605.351 00	99 999							
			p_0		+	7 0	0	0	<u> </u>		>		-															
$^{N}P_{13}$			16616.63^{1}	608.301		601.27^{3}	$595 \cdot 50^1$	591.07^{1}	587.901		171.980		586.60^{1}))))														
$J+\frac{1}{2}$	ରୀ ଜ	94	က တ	Γ- α	ာတာ	9:	125	5. 14.	15 16	17	<u>s</u> 6:	205	$\frac{21}{22}$	- 53 	25 25	26 37	- - - - - - - - - - - - - - - - - - -	53	31	3 22	28. 4. g	3 9 9	32	8 8 80 80	40	42	£4.	45 46

6e

Table III. Wave numbers of lines in the $(0,\,0)$ band. ${}^4\Sigma \to {}^4\varPi_{\frac32}$ transition

480	THOMAS E. NEVIN ON ROTATIONAL ANALYSIS OF THE
$^{T}R_{42}$	
sQ_{42}	16724-53 ¹ 3 737-88 ¹ 4 752-80 ¹ 3 769-29 ¹ 4 787-35 ¹ 3 806-93 ³ 8 827-85 ² 4b 850-55 ¹ 1 874-41 ¹ 3 900-15 ¹ 1
$^{S}R_{32}$	16724-95 ¹ 3 738-31 ² 5 753-23 ¹ 3 769-73 ¹ 3 787-75 ¹ 4 807-33 ² 4 828-36 ² 4b 851-00 ¹ 4 875-02 ¹ 2 900-58 ¹ 6
$^RP_{42}$	16697-24 ¹ 1 703-14 ¹ 2 710-58 ² 5 719-62 ¹ 2 730-31 ² 6 742-62 ² 5 756-18 ¹ 0 771-48 ¹ 0 788-23 ¹ 1
R_2 and $^RQ_{32}$	16697.741 1† 703.581 3† 711.021 4 720.031 4 720.662 7 742.891 6 756.611 6 771.881 6 7788.671 7 806.933 8 826.701 6 847.921 6 894.711 4 920.281 4 § \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
$^{Q}R_{12}$	16689.772 1 689.772 1 691.462 7 694.542 4 699.271 3 705.571 4 713.472 7 722.871 3 746.312 5 746.312 5 775.702 6 792.722 3 830.852 3
Q_2 and $^{\it Q}P_{32}$	16690.192 1* 690.192 1* 691.771 2* 694.921 4 699.662 6 705.981 4 713.871 6 723.281 4 746.741 6 760.722 5 776.182 6 831.351 6 852.641 4 875.361 4 899.481 3 924.981 3 951.881 3‡
$^{p}Q_{12}$	16684-816 25 680-321 4 677-501 5 676-311 6 676-723 7 678-731 7 682-301 6 694-071 5 702-231 4 711-941 4 723-072 4 723-072 4 723-072 4 723-072 2 723-072 2 723-072 4 723-072 4 723-072 4 723-072 4 723-072 4 723-072 4 723-072 4
P_2	16677-86 ¹ 00 676-72 ³ 7 677-22 ² 1 679-11 ¹ 00 <i>b</i> 682-73 ¹ 00 694-54 ² 4 702-67 ¹ 2 712-38 ¹ 1 723-51 ² 5 736-31 ⁴ 10 750-25 ² 6 765-90 ¹ 2 782-82 ² 7
$^{o}P_{12}$	16677.22 ² 1 668.50 ¹ 2 661.39 ² 5 655.95 ² 5 649.80 ³ 6d 649.80 ³ 6d 649.80 ³ 6 655.95 ² 5 661.39 ² 5 661.39 ² 5 661.39 ² 5 668.31 ¹ 0 676.72 ³ 7 686.49 ¹ 0
$J+rac{1}{2}$	2 to 4 7 5 5 7 8 6 9 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* Q_2 only. Corresponding lines in ${}^0P_{32}$ not observed. \dagger ${}^RQ_{32}$ only. Corresponding lines in R_2 not observed. \ddagger Branches could not be followed beyond this point owing to blackening produced by He $\lambda 5876$. \$ Observed by ghost of He $\lambda 5876$.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 $^4\Sigma
ightarrow ^4H_{rac{5}{2}}$ TRANSITION

Table IV. Wave numbers of lines in the (0, 0) band.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL TRANSACTIONS COLLECTOR

PHILOSOPHICAL THE ROYAL TRANSACTIONS COLLECTOR

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

$^{U}R_{41}$	
$^TQ_{41}$	$16790.98^{1} 2$ $807.33^{2} 4$ $825.84^{1} 2$
$^{T}R_{31}$	16791.38^{1} 1 807.88^{1} 2 826.27^{1} 3 846.41^{1} 2d 868.42^{1} 3 $-$ 917.451 0
$^{\it SP}_{41}$	16800.05^{1} 2
${}^{S}R_{21}$ and ${}^{S}Q_{31}$	16763.43^{1} 5 773.91^{1} 3c 786.32^{2} 7 800.50^{1} 5 816.49^{2} 6b 834.25^{1} 7 897.58^{1} 4 921.96^{1} 2
$^{R}Q_{21}$ and $^{R}P_{31}$	$16743.65^{1} 5d $ $748.07^{1} 8$ $754.39^{1} 8$ $762.57^{1} 6$ $772.61^{1} 8$ $784.40^{1} 6$ $813.20^{1} 6$ $848.60^{1} 7$ $868.72^{1} 7$ $899.38^{1} 5$ * $938.24^{2} 3$ $963.64^{1} 1b $
R_1	$16743 \cdot 23^{1} \ 00$ $747 \cdot 64^{1} \ 2$ $753 \cdot 96^{2} \ 4$ $762 \cdot 16^{1} \ 3$ $772 \cdot 14^{1} \ 4$ $783 \cdot 96^{1} \ 4$ $829 \cdot 64^{1} \ 6$ $848 \cdot 16^{1} \ 6$ $868 \cdot 28^{1} \ 5$ $*$ $*$ $937 \cdot 80^{2} \ 4$ $964 \cdot 07^{1} \ 3b_{4}^{+}$
$^{Q}P_{21}$	16735.783 10 732.02 ¹ 4 730.31 ² 6 730.66 ² 7 732.79 ² 8 736.79 ¹ 6 742.62 ² 5 760.25 ² 6 770.58 ¹ 4 797.52 ³ 10 ^b 813.42 ² 2d 830.85 ² 3 849.86 ¹ 1 870.36 ² 4
Q_1	16735-32 ¹ 00 731-61 ¹ 3 729-89 ¹ 3 730-17 ¹ 6 732-34 ¹ 6 736-31 ⁴ 10 742-18 ¹ 8 749-79 ² 8 759-10 ¹ 7 797-10 ¹ 9 812-97 ¹ 6 830-41 ¹ 7 891-89 ¹ 6 869-91 ¹ 7 891-89 ¹ 6 940-28 ¹ 3 966-67 ¹ 5 [‡]
P_1	. 16720-281 714-451 710-582 5 710-582 5 708-561 5 718-581 6 713-472 7 713-472 7 713-41 755-692 4 755-692 4 768-731 4 799-751 3 857-451 5 836-771 3 828-772 903-152 4 928-311 34
$J + \frac{1}{2}$	84 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Obscured by ghost of He $\lambda 5876$.

Ranches could not be followed beyond this point owing to the blackening produced by He $\lambda 5876$. ${}^R\!Q_{21}$ only. Corresponding line in ${}^R\!\dot{P}_{31}$ not observed.

60-2

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY A

THOMAS E NEVIN ON ROTATIONAL ANALYSIS OF THE

Table V. Wave numbers of lines in the $(0,\,1)$ band. ${}^4\Sigma \to {}^4\varPi_{-\frac{1}{2}}$ transition

	THOMAS E. NEVIN ON ROTATIONAL ANALYSIS OF THE
R_4	15605-31 ¹ 620-29 ³ 635-96 ² 652-74 ² 670-79 ² 689-78 ¹ 710-00 ² 731-42 ¹ 778-04 ¹ 829-82 ¹ 829-82 ¹ 857-71 ¹ 886-99 ¹ 917-51 ² 949-49 ¹ 16017-56 ¹
Q_4	15597.111 1 607.38 ² 9 618.50 ¹ 4 630.78 ¹ 4 644.14 ³ 9b 658.66 ¹ 5 674.40 ¹ 5 729.15 ¹ 4c 729.15 ¹ 4c 750.011 5 772.21 ¹ 4 795.80 ² 4d 820.69 ¹ 4 847.01 ¹ 3 874.74 ² 5 903.86 ¹ 3
$^{Q}R_{34}$	15597.632 7 607.751 4 618.941 4 631.191 4 644.573 6 659.091 4 674.881 2 710.002 3 729.561 1 750.411 1 772.623 4 796.272 4
P_4	15592-631 2 599-191 1 606-981 2 615-891 2 637-311 5 649-841 2 678-871 2 695-411 2 713-341 4d 732-591 1
${}^{P}R_{24}$ and ${}^{P}Q_{34}$	15579.42 ² 2† 582.75 ¹ 2† 587.39 ¹ 5† 593.00 ¹ 7 599.65 ¹ 8 607.38 ² 9 616.35 ¹ 7 626.41 ¹ 7 637.73 ² 8 650.28 ¹ 5 695.83 ¹ 2 713.70 ¹ 2 ^c 733.02 ¹ 1
$^{o}R_{14}$	574.663 6b 574.262 00 574.262 00 575.172 1
$^{o}Q_{24}$ and $^{o}P_{34}$	15575-172 1* 574-663 66* 574-663 66* 575-591 5 577-651 5 590-811 4 597-632 7 605-791 3 615-233 12 625-962 7
$^{N}Q_{14}$	$15564.08^{1} \ 00$ $559.45^{1} \ 1$ $555.77^{1} \ 1$
$^{N}\!P_{24}$	15564.58^{1} 15564.58^{1} 1556.31^{1} 1558.31^{2} 1553.78^{2} 1552.55^{2} 1553.78^{2} 1553.78^{2} 1553.78^{2} 1553.78^{2} 1553.78^{2}
$^{M}P_{14}$	$15542\cdot00^{1}$ 2
$J+\frac{1}{2}$	128479-8001128473111111111111111111111111111111111111

* ${}^{o}Q_{24}$ only. Corresponding lines in ${}^{o}P_{34}$ not observed.

 \dagger $^{P}Q_{34}$ only. Corresponding lines in $^{P}R_{24}$ not observed.

‡ Obscured by line 6261·6 OI.

Table VI. Wave numbers of lines in the (0,1) band. ${}^4\Sigma \to {}^4\varPi_{\frac{1}{2}}$ transition

1	FIRST NEGATIVE BAND SPECTRUM OF OXYGEN 483
SR_{43}	15670-63¹ 0 687-48¹ 2 705-79¹ 2c 725-43¹ 2 746-53¹ 3 768-92² 4 792-95¹ 3d 818-37² 4d 845-04¹ 2 873-27¹ 0
^R Q ₄₃	15647.48^{1} 3 658.55^{1} 5 671.07^{1} 5 684.99^{3} $10b$ 700.35^{2} $7b$ 717.03^{1} 6 735.19^{1} 5 775.82^{3} 9 798.27^{1} 4 822.16^{1} 3 847.57^{1} 3 874.40^{1} 0 902.63^{1} 1 932.37^{1} 0 963.51^{1} 00
R_3	$15717.48^{1} 3$ $735.63^{1} 0b$ $755.17^{1} 00$ $776.22^{1} 0$ $798.70^{2} 6$ $822.60^{1} 1$ $847.99^{1} 00$ $874.74^{2} 5$ $903.03^{1} 1$ $932.79^{1} 0$ $963.99^{1} 0$
$^{arrho}P_{43}$	15644·14 ³ 9b 652·20 ¹ 4 661·71 ¹ 6c 672·62 ¹ 4 684·99 ³ 10b 698·73 ² 7 714·02 ¹ 2 730·81 ² 3 748·80 ² 3c 768·49 ² 3 789·52 ¹ 00 812·09 ¹ 2 836·16 ¹ 00 861·69 ¹ 00
Q_3 and ${}^qR_{23}$	15632-52¹ 00† 637-92² 6† 644-57³ 6 652-74² 5 662-26¹ 3d 673-08¹ 4 685-43¹ 4 731-12¹ 2 749-25⁴ 20b 768-92² 4 789-97¹ 5 812-53¹ 5 836-56¹ 3 847-39² 4 978-65¹ 1 16011-55¹ 3
$^{P}R_{13}$	15624.50^{1} 2 625.45^{1} 1 627.75^{1} 1 631.46^{1} 1 636.60^{1} 1 643.27^{2} 4 651.19^{1} 0 660.54^{1} 0
P_3 and $^PQ_{23}$	15624-991 2* 625-963 7* 628-191 3 631-951 6 631-951 6 651-641 6 651-641 6 671-991 5 684-371 5 698-231 6 713-591 3c 730-382 10 748-711 3c 768-492 3 789-781 00
$^{o}Q_{13}$	15619.79 ² 3 614.82 ² 2 611.04 ² 6 608.90 ² 5 608.18 ¹ 4 608.90 ² 5 611.04 ² 6 614.82 ² 2 619.79 ² 3 626.41 ² 7 634.48 ¹ 0 644.14 ³ 9 ^b 655.14 ² 2 ^b 667.74 ¹ 0
$^{o}P_{23}$	15620-293 3 615-233 12 611-522 4 609-352 5 609-352 5 611-522 4 615-233 12 620-293 3 626-871 2 634-931 1 644-573 6 655-531 0 668-111 0 682-231 00 697-821 00
$^{N}P_{13}$	15594.56^{1} 1588.05^{1} 0582.91^{1} 2579.42^{2} 2577.31^{2} 1576.61^{1} 00577.31^{2} 1577.31^{2} 1577.31^{2}
J + $\frac{1}{2}$	ε 4 τ ο Γ ο ο ο 0 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

* ${}^{P}Q_{23}$ only. Corresponding lines in P_3 not observed.

† Q_3 only. Corresponding lines in ${}^qR_{23}$ not observed.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS COLLEGE

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY SOCIETY

SOCIETY

484 $855.13^{1}00$ $15721.90^{1}00$ 759.33^{1} 780.94^{1} 803.89^{2} 828.63^{1} 739.87^2 $^TR_{42}$ 0 က 6 10 739.36^2 756.61^{1} 775.36^2 795.80^2 723.92^1 841.82^2 867.091 817.98^{1} 15710.22^{1} $^{S}Q_{42}$ $724.24^3 12b$ ಣ Ø $^4\Sigma
ightarrow ^4\varPi_{3\over 2}$ TRANSITION 757.04^{1} 796.27^2 739.87^{2} 775.82^{3} 818.37^2 $842 \cdot 15^1$ 15710.63^{1} 894.40^{1} 867.47^{1} 922.80^{1} 952.85^{1} $^{S}R_{32}$ 3 9 0 705.92^{2} 717.25^{3} $730 \cdot 11^1$ 696.48^{1} 778.84^{1} $^RP_{42}$ 15682.59^{1} 744.72^{1} 688.69Table VII. Wave numbers of lines in the (0, 1) band. 42 2 9 ಣ ∞ 10 9 761.38^{2} 12 O and RQ_{32} 717.65^{2} 696.98^2 $15683 \cdot 03^{1}$ 745.12^{1} 689.13^{1} 730.55^{1} 779.22^{1} 842.47^{1} 892.52^{1} 919.87^{1} 044.60^{1} 706.43^{1} 798.70^{2} 819.75^{1} 866.71^{1} 115.91^{1} 979.26^{1} $16011 \cdot 10^{1}$ 948.78^{1} R_2 $723.78^2 10b$ c₁ O 0.1 $^{\circ}$ O 9 711.87^{1} 769.54^{1} 692.90^{1} 701.55^{1} 737.42^{1} 752.69^{1} 787.93^{2} 685.93^{1} 15680.68^{1} $^{Q}R_{12}$ сл * $724.24^3 12b$ 0 ಣ 10 10)O 00 10 4 Q_2 and ${}^{\bar{q}}P_{32}$ $675 \cdot 58^1$ 701.95^{1} 712.29^{1} 753.14^{2} 853.24^{1} 932.01^{1} $058{\cdot}19^1$ 15675.34^{1} 677.45^{1} 769.98^{1} 877.96^{1} 093.51^{1} $693 \cdot 29^1$ 737.88^{1} 808.42^{2} 830.07^{1} 961.31^{1} 686.33^{1} 904.21^{1} 992.11^{1} 681.04^{1} 788.43^{2} 16024.42^{1} M 9 JΩ 10 60 00 $784.01^{1}00$ 662.69^2 670.79^{2} $705 \cdot 01^{1}$ 731.83^{1} 663.69^{3} $666 \cdot 40^{1}$ 717.65^{2} 747.66^{1} 694.00^{1} 663.39^{1} 765.08^{1} 665.84^{1} 676.88^{1} 684.62^{1} $^{P}Q_{12}$ $15670 \cdot 06^{1}$ $15684.99^3 10b$ $827.14^{1}00$ $850.79^{1}00$ 784.51^{1} 705.44^{1} 748.14^{1} 804.96^{1} 718.06^{1} 732.28^{1} 765.49^{1} 694.42^{1} P_2 2dØ ∞ $654 \cdot 19^1$ 637.73^{2} 643.27^2 648.41^1 $655 \cdot 14^2$ 647.39^{1} 642.57^{1} 15662.69^{2} 639.33^{1} 637.92^{2} 639.78^{1} 663.69^{3} 673.60^{1} $^op_{12}$ $J + \frac{1}{2}$

 Q_2 only. Corresponding lines in $^{q}P_{32}$ not observed.

 ${}^RQ_{32}$ only. Corresponding lines in R_2 not observed. -1--

Ø

 $890 \cdot 13^{1}$ 915.86^{1}

Ö

 841.82^2

Ö

 841.38^{1}

c₁

 791.46^{1}

 791.03^{1}

 808.84^{1}

 808.42^2

က

 827.94^{1}

 827.60^{1}

0.1

 848.24^{1}

10

 821.97^{1}

 821.54^{1}

0

 943.26^{1}

ಣ

 886.63^{1}

က

 886.18^{1}

 $863 \cdot 40^{1}$

 862.93^{1}

ಣ

 911.55^1

 $911{\cdot}06^1$

 938.06^{1}

 937.61^{1}

 $995 \cdot 51^1$

 965.72^{1}

 870.63^{1}

 16026.81^{1}

 947.39^{2}

 920.20^{1}

0

894.62

 976.17^{1}

 $038 \cdot 30^1$

 16006.43^{1}

 $071{\cdot}70^1$

 106.51^{1}

 142.93^{1}

0

 15917.04^{1}

3d

 793.91^1

 794.33^1

10

 772.62^{3}

6

 773.05^2 787.93^{2}

 $749.66^2 12b$

 749.25^{4} 20b

 787.56^{2}

 θ

 759.61^{1}

 $760 \cdot 14^{1}$

 $813.35^{1}00$

 834.21^{1}

9

 804.32^{1}

 \mathbf{c} 10

 804.69^{1}

 $760 \cdot 40^{1}$

 760.01^{1}

က

 730.81^{2}

 730.38^2 10

 $724.24^3 12b$

 723.78^2 10b

 $719{\cdot}50^1$

 719.05^{1}

က

 $822.89^{1}00$

 823.37^{1}

6

 773.05^2

20

 772.62^{3}

 $\tilde{5}b$

 739.36^2

738.881

 843.84^{1}

9

 787.56^2

10

 787.12^{1}

 $749.66^2 12b$

749.254 206

 $866 \cdot 13^{1}$

 θ

 803.89^2

 803.42^{1}

က

 761.85^2

 761.38^{2} 12

 775.82^{3}

6

 775.36^2

ಣ

 776.87^{1}

 15761.85^2

 $15762.30^{1}00$

က

 $15749.25^{4} 20b | 15748.80^{2}$

485

 ${}^R\!Q_{21}$ only. Corresponding lines in ${}^R\!P_{31}$ not observed

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES $^4\Sigma
ightarrow ^4II_{\frac{5}{2}}$ TRANSITION SOCIETY Table VIII. Wave numbers of lines in the (0, 1) band.

 vR_{41}

 $^TQ_{41}$

 $^TR_{31}$

 sP_{41}

 ${}^{s}R_{21}$ and ${}^{s}Q_{31}$

 ${}^{R}Q_{21}$ and ${}^{R}P_{31}$

 R_1

 15726.41^{1} 1*

 $729.24^{1} 4c^{*}$

 $15728.85^{1}00$

 734.01^1

 733.54^{1} 740.37^{1}

 716.08^{1} 716.79^2

 715.64^{1}

 716.35^{1}

 15717.25^3

 15716.79^{2}

 15713.59^{1}

4

 P_1

 $J+\frac{1}{2}$

 740.82^{1}

50

THE ROYAL

PHILOSOPHICAL TRANSACTIONS

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

00 01 101	705.92^2	700.35^2		696.98^{2}	$695{\cdot}64^{1}$	696.22^{1}	698.73^2	$703 \cdot 10^1$	709.28^{1}	717.25^3	797.031		738.54^{1}	751.76^{1}	766.67^{1}))	783.23^1	801.47^{1}	821.30^{1}		842.73^{1}									
l 1G	100	- ∞ ‹	တ	10	121	13 14	15 16	187	19 20	22 22	82 6 44	25	26 57	8 18 18	30 30	31	32	334 34	35 36	37	8 8 80 80	40	41 42	43	44	45	46 47	48	49 50	51

 θ

 $^{\varrho}P_{21}$ Q_1

Table IX. Wave numbers of lines in the $(1,\,0)$ band. $^4\Sigma \to ^4\varPi_{-\frac{1}{2}}$ transition

	6 THOMAS E. NEVIN ON ROTA	ATIONAL ANALYSIS OF THE
R_4		935.71^{2} 957.33^{4} 979.89^{2} 18003.54^{1} 028.21^{1} 053.92^{1} 080.71^{1} 108.56^{2} 137.53^{1}
	0 0 6 4 0 10 10 0 10	21
Q_4	24 17765-221 773-732 782-931 792-911 803-601 815-122 827-491 840-721 854-921	886-134 12 903-362 6 921-552 6 940-782 4 961-132 8 982-49 ² 3 18004-96 ¹ 5 028-47 ¹ 1 053-09 ¹ 2 078-83 ² 2
	— 10 4 4 4 10 4 m m 0/	
${}^{arrho}R_{34}$	7.34 17765.591 774.212 783.391 793.332 804.041 815.542 827.921 841.162 855.361	
		с 4 ε ε ε 4 г
P_4	74 17763-28 ¹ 768-01 ² 773-27 ¹ 779-43 ¹ 786-39 ¹ 794-22 ¹ 802-97 ² 812-70 ²	823.39^{2} 835.11^{1} 847.87^{1} 861.70^{1} 876.54^{2} 892.40^{2}
Q ₃₄		o 10 to 4
$^{P}R_{24}$ and $^{P}Q_{34}$	17756-821 759-781 763-791 773-732 779-871 786-821 794-631 803-382	823.87^{2} 835.51^{1} 848.30^{1} 862.15^{2}
$^{o}R_{14}$	7750.413 0 750.413 0	
	171	
$^{\it o}Q_{\it \scriptscriptstyle 24}$ and $^{\it o}P_{\it \scriptscriptstyle 34}$	751.711 2* 750.871 3* 750.762 4 751.421 4 752.951 5 755.331 6 755.391 4 762.802 5	774.21 ² 5
$^{\scriptscriptstyle N}\!Q_{14}$	735.371 1 736.371 1 730.711 0 726.811 1 723.791 00	
$^{\scriptscriptstyle N}\!P_{24}$	7.22.0871	
$^M\!P_{14}$	17708·38 ¹ 1 699·92 ¹ 0	

* ${}^{0}Q_{24}$ only. Corresponding lines in ${}^{0}P_{34}$ not observed.

 \uparrow ${}^{p}Q_{34}$ only. Corresponding lines in ${}^{p}R_{24}$ not observed.

 957.33^{4}

70

 $901{\cdot}80^1$

8

 902.23^{1}

918.661

 919.08^{1}

20

 864.83^2

8

 865.31^{3}

 877.29^{1}

10

 877.76^{1}

 890.86^{1} 905.68^{2}

 891.36^{4}

 7

 843.84^2

 793.33^{2}

01

 793.74^{1}

 788.42^{1}

ಣ

 788.91^{1}

 740.91^{2}

 741.26^{2}

Ö

 834.61^{1}

20

 826.55^{1}

 782.21^{2}

 782.70^{1}

က

781.381

 784.76^{1}

 785.20^{1}

8

 741.60^{1}

 743.45^{1}

10

 906.19^{1}

 936.15^{1}

 916.02^{1}

12

 886.13^{4}

3b

 17886.74^{1}

 979.89^2

 18003.38^{3}

 936.64^{l}

 937.11^{1}

 955.77^{2}

 $956 \cdot 17^{1}$

976.061

 976.70^{4}

FIRST

 $862{\cdot}15^2$

 879.05^{1}

10

 $845 \cdot 51^{1}$

 819.61^2 826.39^{1}

 820.03^{1}

 826.85^{1}

 802.97^2

9

 803.38^2

 783.80^{1}

 784.25^{1}

 786.95^{1}

Ø

 787.43^{1}

 17791.32^{1}

 17791.81^{1}

 $17779 \cdot 10^{1}$

Vol. CCXXXVII.

 801.62^{2}

%

 802.06^2

 805.35^{1}

10

 805.75^{1}

 17813.84^3

42

 814.30^{1}

 17801.62^{2}

%

 17802.06^{2}

 $17809.76^{1}0d^{\ddagger}$

 $834 \cdot 27^2$

 823.87^{2}

17814.691

 896.98^{1}

 θ C

 871.42^{1}

10

 834.27^2

 834.76^{1}

 843.38^2

19

 843.84^{2}

808.84¹

4

 809.25^{1}

က

 780.75^{1} 780.91^{1}

 781.20^{1}

 750.76^{2}

 746.58^{1}

 756.19^{1}

 762.80^{2}

781.691

4 က

 782.21^{2}

 813.44^{1}

 813.84^{3}

 819.19^{1}

9

 819.61^2

 853.51^{1}

4

 853.98^{1}

 857.95^{1}

 $846 \cdot 40^{1}$

17831.691

 sR_{43}

 $^{R}Q_{43}$

 R_3

 $^{arrho}P_{43}$

 Q_3 and ${}^{Q}R_{23}$

 $^{P}R_{13}$

 P_3 and $^PQ_{23}$

 $^oQ_{13}$

 $^oP_{23}$

 $J + \frac{1}{2}$

NEGATIVE BAND SPECTRUM OF OXYGEN

 027.95^{1}

46

 053.47^{1}

 080.39^{1}

8

 997.41^{2}

 997.87^{1}

 921.55^2

 \boldsymbol{e}

 921.96^2

98

 865.76^2

4

 878.58^{1}

10 9 က

 892.54^{1} 907.62^{2}

10

 815.12^{2}

30

 815.54^2 825.05^{1}

0

 750.41^{3}

01

10

 854.27^{1}

က

 799.29^{1}

က

 799.76^{1}

 807.09^{2}

 746.00^{1}

 938.59^{2}

10

 939.08^{2}

 18019.83^{1}

 18020.44^{1}

 956.87^2

 ∞ 9

 957.33^{4}

 976.28^{2}

 976.70^{4}

8

 997.41^{2}

 $18019 \cdot 03^{1}$

 923.98^{1}

 041.88^{1}

 108.56^{2}

0 01

 068.61^{1}

 $069 \cdot 16^{1}$

 094.43^{2}

0

 094.93^{1} $122{\cdot}14^1$ $150.35^{1}00$

3d

 065.82^{1}

 $043 \cdot 72^{1}$

 044.14^{1}

 $^4\Sigma
ightarrow ^4arPi_{rac{1}{2}}$ transition

Table X. Wave numbers of lines in the (1, 0) band.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 091.13^{1} 1

† Q_3 only. Corresponding lines in ${}^0R_{23}$ not observed.

* ${}^{P}Q_{23}$ only. Corresponding lines in P_3 not observed.

61

488

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

THOMAS E. NEVIN ON ROTATIONAL ANALYSIS OF THE

TRANSITION
*H
7
$\sum_{i=1}^{4}$
, $0)$ band.
0
(I,
THE
Z
ES
LINES IN
OF
AVE NUMBERS OF LINES IN THE
\mathbb{H}
A
≥
TABLE XI.

	THOMAS E. NEVIN ON ROTATIONAL ANALYSIS OF THE
$^{T}\!R_{42}$	17897.93 ² 914.61 ³ 932.88 ¹ 952.63 ¹ 973.83 ² 996.13 ² 18020.00 ¹ 044.90 ¹
$^{S}Q_{42}$	17886·13 ⁴ 12 898·55 ¹ 4 912·63 ² 4 927·82 ² 6 <i>b</i> 944·69 ¹ 3 962·78 ¹ 1 — 18002·94 ¹ 2 025·13 ¹ 1
$^{s}R_{32}$	17898-981 3 913-112 6 928-341 4 945-111 3 963-211 3 025-531 3 048-731 1 073-351 1 099-191 1 126-222 2
$^RP_{42}$	
R_2 and $^RQ_{32}$	17860-13 ¹ 1† 17859-69 ¹
$^{Q}R_{12}$	17855-971 3 859-981 3 865-313 8b 872-053 6 880-252 4 889-731 4 900-561 3 912-632 4 926-151 2 940-782 4 956-872 1 974-191 00 992-692 6 18012-701 1 033-501 0
Q_2 and ${}^qP_{32}$	17852.592 2* 852.592 2* 853.772 3* 856.432 6 860.351 3 865.762 8b 872.492 6 900.972 6c 913.112 6 926.611 4c 941.312 7 957.334 8 993.162 5 18013.001 2 033.991 3 056.332 3b 074.661 1
$^{P}Q_{12}$	842.701 5 842.701 5 839.481 5 837.401 6 837.401 6 840.901 6 849.951 5 856.432 6 864.341 5 873.491 4 883.961 3 895.671 3 c 908.731 2
P_2	17845.211 0 850.391 1 856.932 2 864.832 5 873.961 1 884.421 3 896.122 6 909.142 3 923.481 1
$^{o}P_{12}^{\sim}$	830-871 2 830-871 3 823-39 ² 5 817-32 ¹ 4 812-70 ² 5 809-43 ¹ 4 807-60 ¹ 4 807-99 ¹ 4 807-99 ¹ 4 818-86 ¹ 2 818-86 ¹ 2 824-87 ¹ 2 832-29 ¹ 0 841-16 ² 3
$J+rac{1}{2}$	2 & 4 \(\tau \) 0 \(\tau \) 0 \(\tau \) 1 \(\tau \) 1 \(\tau \) 1 \(\tau \) 1 \(\tau \) 2 \(\tau \) 3

* Q_2 only. Corresponding lines in $^4P_{32}$ not observed.

 \uparrow RQ_{32} only. Corresponding line in R_2 not observed.

 \dagger $^sQ_{31}$ only. Corresponding lines in $^sR_{21}$ not observed.

* ${}^RQ_{21}$ only. Corresponding lines in ${}^RP_{31}$ not observed.

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

F TRANSITION
$\Rightarrow 4\Pi_{\frac{5}{2}}$
$\frac{4}{2}$
BAND.
<u>,</u>
$\overline{1}$
THE
Z
OF LINES
OF
NUMBERS OF LINES IN THE (1
AVE N
$N_{ m A}$
≥
XII.
BLE
Γ_{A}

	FIRST NEGATIVE BAND SPECIRUM OF OXYGEN	
$^{U}\!R_{41}$	17986.761	
$^TQ_{41}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$^{T}R_{31}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$^{S}\!P_{41}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
${}^{s}R_{21}$ and ${}^{s}Q_{31}$	17910-64 ¹ 1d [†] 916-92 ¹ 4 [†] 924-85 ² 8 934-63 ¹ 5 946-07 ¹ 5 959-15 ¹ 5 973-83 ² 5 990-16 ¹ 4 18007-97 ¹ 4 027-22 ¹ 3 047-97 ¹ 1 093-70 ¹ 2 118-57 ² 3b 144-71 ¹ 2 172-19 ¹ 1	
$^{\scriptscriptstyle R}Q_{\scriptscriptstyle 21}$ and $^{\scriptscriptstyle R}P_{\scriptscriptstyle 31}$	17903·36 ² 6* 905·68 ² 6* 909·54 ¹ 6 915·07 ³ 14 922·36 ¹ 7 931·26 ¹ 6 941·76 ¹ 6 953·84 ¹ 7 967·45 ¹ 6v 982·49 ² 3 998·99 ¹ 4 18016·94 ¹ 3 056·85 ¹ 1 078·83 ² 2 102·09 ¹ 2	
R_1	17902-991 00 905-241 0 909-142 3 914-613 4 921-962 6 930-831 4 941-312 7 953-381 4 966-971 5 982-041 7 998-551 3 18016-482 6 035-751 4 056-332 36 078-331 2 101-641 3 126-222 2 152-001 1	
$^{arphi}P_{21}$	894-481 5 894-481 5 892-40 ² 5 892-40 ² 5 892-00 ³ 6 896-55 ¹ 5 901-27 ¹ 4 907-62 ² 6 915-45 ¹ 3 924-85 ² 8 935-71 ² 5 947-93 ¹ 3 961-59 ¹ 2 976-70 ⁴ 6 993-16 ² 5 18010-91 ¹ 0	
Q_1	894.041 3 894.041 3 892.003 6 891.601 4 893.031 7 896.122 6 900.831 7 907.152 6 915.073 14 924.392 8 935.221 6 947.501 7 961.132 8 976.262 8 992.692 6 18010.451 4 029.511 5 049.891 2 071.511 2	118.572 24
P_1	882.721 3 882.721 3 876.542 4 872.053 6 869.281 5 868.211 5 868.721 5 874.471 5 874.471 5 874.471 5 874.471 5 971.31 6 914.613 4 926.741 4c 940.271 3 955.171 1 971.321 1 988.661 2b	
$J+\frac{1}{2}$	83 83 83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	43

490

Table XIII. $\varDelta_2F'(J)$ values for v'=0 level from $(0,\,0)$ band

	$A_2F_1'(\cdot)$	$A_2 F_1'(J) = F_1'(J+1) - F_1'(J-1)$	$+1)-F_1'(.$	J-1)	$A_2F_2'(J)$		$= F_2(J+1) - F_2(J-1)$	7-1)	$A_2F_3'(J)$	$\varDelta_2 F_{\$}'(J) = F_{\$}'(J+1) - F_{\$}'(J-1)$	$-1)-F_3'($	J-1)	$\Delta_2 F_4'(J_4)$	$)=F_{4}^{\prime}(J)$	$A_2F_4'(J) = F_4'(J+1) - F_4'(J-1)$	J-1)
J	$^4\Sigma ightarrow ^4\Pi_{\frac{5}{2}}$	$ 4\Sigma ightarrow 4\Pi_{rac{3}{2}} $	$^4\Sigma\! o^4II_{rac{1}{2}}$	$^4\Sigma ightarrow ^4\Pi_{-\frac{1}{2}}$	$^4\Sigma\! o^4H_{ m s}$	$^4\Sigma \! o \! ^4II_{\frac{3}{2}}$	$^4\Sigma\! o^4H_{rac{1}{2}}$	$^4\Sigma ightarrow ^4\Pi_{-\frac{1}{2}}$	$^4\Sigma ightarrow ^4L_{\frac{3}{2}}$ $^4\Sigma ightarrow ^4L_{\frac{1}{2}}$ $^4\Sigma ightarrow ^4L_{\frac{3}{2}}$	$^4\Sigma ightarrow ^4II_{rac{3}{2}}$	$^4\Sigma \! o ^4\Pi_{rac{1}{2}}$	$^4\Sigma \rightarrow ^4\Pi_{-\frac{1}{2}}$	$^4\Sigma\! o^4\!H_{rac{5}{2}}$	$^4\Sigma\! o^4H_{rac{3}{2}}$	$^4\Sigma\! ightarrow\! ^4I\!I_{rac{1}{2}}$	$^4\Sigma \rightarrow ^4\Pi_{-\frac{1}{2}}$
	$\frac{R_1(J)}{-P_1(J)}\Big _0^6$	$\frac{{}^{2}R_{12}(J)}{{}^{-}{}^{0}P_{12}(J)}$	$-^{R}_{13}(J)$	${}^{R_{14}(J)}_{-MP_{14}(J)}$	$\begin{array}{c} SR_{21}(J) \\ - ^{Q}P_{21}(J) \end{array}$	$R_2(J) = -P_2(J)$	${^{q}R_{23}(J)}_{-{^{o}P}_{23}(J)}$	$\frac{{}^{P}R_{24}(J)}{{}^{-N}P_{24}(J)}$	$ \frac{R_2(J)}{-P_2(J)} \underbrace{\left(\begin{matrix} q_{R_{23}}(J) \\ -OP_{23}(J) \end{matrix}\right)}_{-NP_{24}(J)} \underbrace{\left(\begin{matrix} r_{R_{31}}(J) \\ -RP_{31}(J) \end{matrix}\right)}_{-NP_{24}(J)} \underbrace{\left(\begin{matrix} s_{R_{32}}(J) \\ -P_{32}(J) \end{matrix}\right)}_{-NP_{32}(J)} \underbrace{\left(\begin{matrix} r_{R_{31}}(J) \\ -P_{32}(J) \end{matrix}\right)}_{-NP_{43}(J)} \underbrace{\left(\begin{matrix} r_{R_{31}}(J) \\ -P_{43}(J) \end{matrix}\right)}_{-NP_{42}(J)} \underbrace{\left(\begin{matrix} r_{R_{31}}(J) \\ -P_{43}(J) \end{matrix}\right)}_{-NP_{43}(J)} \underbrace{\left(\begin{matrix} r_{R_{31}}(J) \\ -P_{43}(J) \end{matrix}\right)}_{-NP_{43$	$SR_{32}(J) = -QP_{32}(J)$	$egin{array}{c} R_3(J) \ -P_3(J) \ \hline \end{array}$	$egin{array}{c} qR_{34}(J) \ -\ ^OP_{34}(J) \end{array}$	${\overset{\scriptscriptstyle UR_{41}(J)}{\scriptscriptstyle -}}_{SP_{41}(J)}$	${}^{T}\!R_{42}(J) \ {}^{-R}\!P_{42}(J)$	$SR_{43}(J) \\ - {}^{Q}P_{43}(J)$	$R_4(J) \\ -P_4(J)$
1.5															23.11	
3.5 4.5		12.55	((22.84	22.83		91 GG		80.66		33.17	33.03	
5.5 6.5	22.95	22.96	23.03	23.05	33.12	33.16	33.12	33.11	(01.66		00.66		43.38	43.42	43.27
7. × 7. ×	33.19	33.15	33.15		43.25	43.31	43.40	43.32	43.31	43.39		43.37	(VIIII)	53.46	53.54	53.58
	43.38	43.32	43.29		53.53	53.44	53.57	53.49	53.49	53.57		53.59		63.75	63.73	63.75
11.5	53.60	53.50	53.52		63.71	63.78	63.73	63.75	63.70	63.75	63.75	63.74		73.87	73.82	73.90
13.5	69.89	63.67	63.74		1000	79.00	79.86	73.86	73.80	73.88	73.81	73.97		84.08	84.05	84.02
14.5 15.5	73.88	73.85	74.00	-8	19.61	00.67	84.01	84.08	84.02	84.05	83.99	83.96			94.18	94.16
17.5	84.05	84.02	84.01		04.15	94.13	94.15	94.09		94.10	94.16	94.21	and the second	104.29	104.27	104.19
19.5	94.18	94.06			104.95	104.27	104.27)) !	104.25	104.26		104.27			114.36	114.32
20.5 21.5 39.5	104.26	104.36			114.33	114.32	114.24			114.30	114.34	114.39			124.57	124.31
23.5 23.5 25.5	114.34	114.31			124.44	124.41	124.32			124.40	124.49	124.39			134.40	134.46
25.5 26.5	124.33	124.41				134.31	134.27			134.31	134.47					144.42
27·5 28·5		134.39				144.46	144.31				144.38					154.32
29.5 30.5		144·46				154.38	154.41				10.401					
$\frac{31.5}{2}$	154.36						167.90				164.24					
32.5 33.5	164.22						67.401			- Printerna de la Printerna de	174.17					

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

Table XIV. $A_2F'(J)$ values for v'=0 level from (0, 1) band

	$\Delta_2 F_1'($	$J) = F_1'(J)$	$A_2F_1'(J) = F_1'(J+1) - F_1'(J-1)$	J-1)	$A_2F_2'(J)$		$=F_2'(J+1) - F_2'(J-1)$	r1)	$\Delta_2 F_3'(J)$	$A_2F_3'(J) = F_3'(J+1) - F_3'(J-1)$	$+1)-F_3'($	J-1)	$\Delta_2 F_4'(.$	$A_2 F_4'(J) = F_4'(J+1) - F_4'(J-1)$	$+1)-F_{4}($	J-1)
٢	$^4\Sigma\!\rightarrow^4\!\Pi_{\frac{k}{2}}$	$ {}^{4}\Sigma \rightarrow {}^{4}\Pi_{\frac{3}{2}} $	$ 4\Sigma ightarrow 4\Pi_{\frac{1}{2}} $	$^4\Sigma \rightarrow ^4\Pi_{-\frac{1}{2}}$	$^4\Sigma ightarrow ^4\Pi_{rac{5}{2}}$	$^4\Sigma\! o^4H_{rac{3}{2}}$	$^4\Sigma ightarrow ^4\Pi_{rac{1}{2}}\left ^4 ight.$	$^4\Sigma\! ightarrow\! ^4\Pi_{-\frac{1}{2}}$	$^{4}\Sigma ightarrow^{4}H_{\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{-\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{-\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{-\frac{3}{2}}$ $^{4}\Sigma ightarrow^{4}H_{-\frac{3}{2}}$	$^4\Sigma \! o \! ^4II_{\frac{3}{2}}$	$^4\Sigma\! o^4H_{rac{1}{2}}$	$^4\Sigma { ightarrow}^4\Pi_{-rac{1}{2}}$	$^4\Sigma \! o \! ^4\Pi_{rac{5}{2}}$	$^4\Sigma\! o^4\!H_{rac{3}{2}}$	$^4\Sigma ightarrow ^4\Pi_{rac{1}{2}}$	$^4\Sigma \rightarrow ^4\Pi_{-\frac{1}{2}}$
	$R_1(J) \\ -P_1(J)$	${^{q}R_{12}(J)} \atop {^{-}}{^{0}P_{12}(J)}$	$-{}^{P}R_{13}(J) \ -{}^{N}P_{13}(J)$	$^{1}_{-M}P_{14}(J)$	${}^{SR_{21}}_{-q}(J) \ {}^{-q}P_{21}(J)$	$R_2(J) \\ -P_2(J)$	$\left. rac{{}^{q}R_{23}(J)}{{}^{-}{}^{0}P_{23}(J)} ight ^{1}$	$-^{P}R_{24}(J) - ^{N}P_{24}(J)$	$ \frac{R_2(J)}{-P_2(J)} \frac{q_{R_{23}}(J)}{-^{OP}_{23}(J)} \frac{P_{R_{24}}(J)}{-^{NP}_{24}(J)} \frac{T_{R_{31}}(J)}{-^{R}P_{31}(J)} \frac{s_{R_{32}}(J)}{-^{Q}P_{32}(J)} \frac{q_{R_{34}}(J)}{-^{P}P_{34}(J)} \frac{q_{R_{34}}(J)}{-^{S}P_{41}(J)} \frac{T_{R_{42}}(J)}{-^{R}P_{42}(J)} \frac{s_{R_{43}}(J)}{-^{Q}P_{43}(J)} \frac{R_4(J)}{-^{P}P_4(J)} $	$\frac{(R_{32}(J))}{(QP_{32}(J))}$	${rac{{{ m R}_3(J)}}{-P_3(J)}}$	${qR_{34}(J) \over -oP_{34}(J)}$	$\begin{bmatrix} ^U\!R_{41}(J) \\ -^S\!P_{41}(J) \end{bmatrix}$	$ \frac{^T\!R_{42}(J)}{^{-R}P_{42}(J)}. $	${}^{SR_{43}(J)}_{-{}^{Q}P_{43}(J)}$	$R_4(J) \\ -P_4(J)$
1.5																
မေး 4 က က် က် က	00.00					Andrew Annual Control	55.69	22.81	90 66	01.00		00 66		33.21		
6.5.	06.77 6. 35	6	6	1	33.17		33.05	33.14	00.66	01.00		80.ee		43.39	43.34	43.33
8.5	33.19	33.29	33.19	33.17	43.35		43.39	43.34		43.20		43.35	W-1-1-0-0-W-1-1-0	53.41	53.59	53.55
9.5 7.5 7.5	43.39	43.36	43.41		53. 55.		53.66	53.60	53.51	53.54		53.54		63.69	63.79	63.81
11.5	53.61	53.57	53.69				3	3	63.69	63.75		63.69		3	2	70
12.5	63.79	63.82	63.85		63.69	Agentur v and Asia	63.73	63.80	73.81	73.87	73.85	73.86		73.78	73.91	73.89
14.5 5.41					73.88		73.91	73.86	100	0 0	30 00 00 00 00 00 00 00 00 00 00 00 00 0			83.91	83.93	84.04
15.5 16.5	68.87	c6.87	13.88		84.01		83.99	83.95		83.98	83.99	84.07	94.15		94.22	94.11
17.5	84.02	84.00	83.93							94.13	94.09	94.19				
18·5 19·5	94.14	94.15			94.18	94.23	94·17			104.27	104.23	104.21			104.35	104.26
20.5	104.90	104 90			104.28	104.28	104.25	AAA 9		66 711	114.99	66			114.23	114.35
21.5 22.5	104.29	104.28			114.31	114.31	114.32	are is makening		114.33	114.33	114.33			124.47	124.47
23.5	114.35	114.40			194.40	17.761	194.95			124.42	124.37	124.45				194.41
25·5	124.39	124.24			04.471	T#.#7T	CC-#71			134.37	134.40					17.701
26.5	134.49				134.42	134.43	134·44			144.43	144.36			- 2		144.39
28.5						144.41	144.42			1)) 					154.40
29.5 30.5	144.39				,	154.30	154.33				154.32					164.37
31.5	154.38					00 +01	00 101				164.30					10 101
32.5 33.5	164.95					164.27	164.23	•			16.771	. •				-
34.5	27 101					174.30				5	17.411					
35.5	174.21					000							-			
36.5 37.5	184.08				i	183.96										
38.5		-				193.81						-				ı

492		THO	WIAS	E.	NE	V 11	N C	M	V.C) 1 <i>F</i>	7 1 1	LOI	N LY T	<i>1</i> /\	INA	LL	SIS	O	T	IH	LIL				
J-1)	$^4\Sigma ightarrow ^4\Pi_{-\frac{5}{2}}$	$R_4(J) \\ -P_4(J)$		32.66	42.53	52.65	62.64	79.63	00.77	85.63	92.54	102.37	112.32	122.22	139.05	70.701	141.84	151-67	161.52			~~~	Physical agency		
$A_2F'_4(J) = F'_4(J+1) - F'_4(J-1)$	$^4\Sigma\! o^4H_{rac{5}{2}}\left ^4\Sigma\! o^4H_{rac{5}{2}}\left ^4\Sigma\! o^4H_{rac{1}{2}}\left ^4\Sigma\! o^4H_{-rac{1}{2}} ight $	$SR_{43}(J) - {}^{Q}P_{43}(J)$		32.56	42.54	52.66	62.71	79.64	H 7	82.64	92.50	102.70	112.52	122.29	191.09	76.101	141.80	151.69							
$J)=F_4'(J)$	$^4\Sigma ightarrow ^4H_{\frac{3}{2}}$	$ \frac{^T\!R_{42}(J)}{^{-R}\!P_{42}(J)} $			42.56	52.63	62.51	79.86	00 00	82.58	92.77	102.45													
$A_2F'_4(.$	$^4\Sigma \! ightarrow ^4II_{\frac{5}{2}}$	$\begin{pmatrix} ^{U}\!R_{41}(J) \\ - ^{S}\!P_{41}(J) \end{pmatrix}$				52.53															- Page of the Control				
BAND [1]		$ \frac{q_{2(J)}}{-P_{2}(J)} \underbrace{\frac{q_{23}(J)}{-^{O}P_{23}(J)} \frac{P_{R_{24}}(J)}{-^{N}P_{24}(J)} \frac{T_{R_{31}}(J)}{-^{R}P_{31}(J)} \underbrace{\frac{s_{R_{32}}(J)}{-^{O}P_{32}(J)} \frac{q_{R_{34}}(J)}{-^{O}P_{34}(J)} \frac{p_{R_{41}}(J)}{-^{O}P_{34}(J)} \frac{T_{R_{42}}(J)}{-^{N}P_{42}(J)} \underbrace{\frac{s_{R_{43}}(J)}{-^{O}P_{43}(J)} \frac{R_{4}(J)}{-^{N}P_{42}(J)}}_{-P_{4}(J)} \underbrace{\frac{s_{R_{43}}(J)}{-^{O}P_{43}(J)} \frac{r_{R_{42}}(J)}{-^{O}P_{43}(J)}}_{-P_{4}(J)} \underbrace{\frac{s_{R_{43}}(J)}{-^{O}P_{43}(J)} \frac{r_{R_{42}}(J)}{-^{O}P_{43}(J)}}_{-P_{42}(J)} \underbrace{\frac{s_{R_{43}}(J)}{-^{O}P_{43}(J)}}_{-P_{42}(J)} \underbrace{\frac{s_{R_{43}}(J)}{-^{O}P_{43}(J)}}_{-P_{43}(J)} \underbrace{\frac{s_{R_{43}}(J)}{-^{O}P_{43}($	*		32.52	42.57	52.62	62.59	72.59	82.31	00.56	06.76	102.47											- Constitution	and the second
= 1 LEVEL FROM (1, 0) BAND $A_2F_3'(J) = F_3'(J+1) - F_3'(J-1)$	$\rightarrow {}^4H_{\frac{3}{2}} \mid {}^4\Sigma \rightarrow {}^4H_{\frac{1}{2}} \mid {}^4\Sigma \rightarrow {}^4H_{\frac{5}{2}} \mid {}^4\Sigma \rightarrow {}^4H_{\frac{3}{2}} \mid {}^4\Sigma \rightarrow {}^4H_{-\frac{3}{2}}$	$R_3(J) \\ -P_3(J)$							72.90	82.62	09.60	66.76	102:50	112.33	122.43	132.11	141.86	151.60	20 101	161.54	170.95	-			
EL FROM $T) = F_3'(J)$	$^4\Sigma \! ightarrow \! ^4\Pi_{rac{3}{2}}$	${^{SR_{32}(J)}_{-qP_{32}(J)}}$			(42.55	52.76	62.58	72.62	82.50	09.65	60.76	102.55	112.42	122.12	132.04	141.86	87.171	20 101						
	$^4\Sigma ightarrow ^4H_{\frac{5}{2}}$	$\left.\begin{matrix}^{T}R_{31}(J)\\-{}^{R}P_{31}(J)\end{matrix}\right $			32.48	42.77		62.57		82.55	00.40	0 1. 76	•			•						And the second second	4 Anna		TO STORAL A STORAL ASSOCIATION OF THE STORAL
$=F_2'(J+1)-F_2'(J-1)$	$^4\Sigma \rightarrow ^4\Pi_{-rac{1}{2}}$	$^{P}\!R_{24}^{24}(J) \ -^{N}\!P_{24}(J)$		22.53	32.56	42.62	52.62	69.61		72.55	82.51														
$A_2F'(J)$ VALUES FOI = $F_2'(J+1) - F_2'(J-1)$	$^4\Sigma\! o^4\!H_{rac{1}{2}}$	${^{q}R_{23}_{23}(J)} \choose {-^{0}P_{23}(J)}$		22.49	32.60	42.60	52.55	69.64	H 0 00	72.60	82.61	92.56	102.45	112.45	199.90	07.771	131-99	141.79	151.65						
7 6	$^4\Sigma\! o^4H_{rac{3}{2}}$	$R_2(J) \\ -P_2(J)$									82.61	92.52	102.43	112.26	199.17	7.777	132.06	141.84	151.67	161.94		26.071	180.77		
Table XV. $A_2F_2'(J)$	$^4\Sigma\! o^4\!H_{rac{5}{2}}$	$SR_{21}(J) - QP_{21}(J)$		22.44	32.45	42.63	52.61	62.60		72.56	82.54	92.52	102.37	112.26	199.17	17771	132-11	141.87	151.55	161.98					
, []	$^4\Sigma ightarrow ^4\Pi_{-rac{1}{2}}$	${{oR_{14}(J)} \choose {-MP_{14}(J)}}$																							
$+1)-F_1'(.$	$^4\Sigma \rightarrow ^4II_{\frac{5}{2}}$	${PR_{13}(J) \over -{}^{N}\!P_{13}(J)} {oR_{14}(J) \over -{}^{M}\!P_{14}(J)}$			22.52		42.55	52.65	62.68	72.61															
$A_2F_1'(J) = F_1'(J+1) - F_1'(J-1)$	$^4\Sigma \! o^4\Pi_{\frac{3}{2}}$	$^{2}R_{12}^{12}(J) \\ ^{-}{}^{o}P_{12}(J)$				32.60	42.66	52.61	62.61	72.65	79.60	\$0.70	92.57	102.43	112.31	122.12	132.00	141.90	06.121	151.53					
$A_2F_1'($	$^4\Sigma \! ightarrow ^4\Pi_{\frac{5}{2}}$	$R_1(J) \subset P_1(J)$)	66.21	22.42	32.60	42.56	52.68	62.62	72.59	60 71	\$2.94	92.50	102-44	112.42	122.21	132.06	141.71	17.171	151.59	161.37	171.05	180.68	100.00	190.39
	J		1.5	ည်း ကို ကို		 	9.5	11.5	13.5	14·5 15·5	16.5	18.5	19.5 20.5	21·5	23.5 7	25.5	26.5 27.5	28.5	30.5	31.5 39.5		34.0 35.5	36.5	38.5	39.5

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

Table XVI. $A_2F''(J)$ values for the v''=0 level from the $(0,\,0)$ band

		TIKSI NEC	JALLVI													F-10-0-0-1			490	
	$F^{\prime\prime}_{ad}(J+1) \ F^{\prime\prime}_{ad}(J-1)$	$(I-U)_{\flat \iota 2} A^{\prime q} \left \begin{array}{c} (I-U)_{\flat \iota 2} A^{\prime q} \\ (I+U)_{\flat \iota 2} - \end{array} \right $	J	27.91	37.20	46.43	55.66	64.72	73.86) :) (82·74									
state	$A_2 F_{4a}''(J) = F_{4a}'(-I) - F_4''$	$(I + L)_{\flat} A - (I + L)_{\flat} A$			37.19	46.50	55.67	64.76	73.79		82.77	91.70	100.53	109.46	118.26	126.97				
$^4\Pi_{-\frac{1}{2}}$ state	(J+1)	$(I-L)_{*\epsilon} A^{\wp} \left((I-L)_{*\epsilon} A^{\wp} \right)$	23.32	32.63	41.94	51.12	71 00	62.00	69.40	78.29	87.34	96.15	108.18	01.001						
	$A_2 F_{4c}''(J) = F_{4c}''$ $= F_{4c}''$	$(\operatorname{I}-\operatorname{\mathcal{U}})_{*\operatorname{I}} \operatorname{\mathcal{A}}^o = (\operatorname{I}+\operatorname{\mathcal{U}})_{*\operatorname{I}} \operatorname{\mathcal{A}}^o$	23.42				-													
	$J+1 \choose sd(J-1)$	$\left(I - L \right)_{\epsilon_1} \! A^{\scriptscriptstyle T} - \left(I - L \right)_{\epsilon_1} \! A^{\scriptscriptstyle T} \right)$	22.46	31.38	40.18	49.06	11 C	C6.1C	66.91	75.73		93.33								
state	$A_2F_{sa}'(J) = F_{sa}'(J+1) - F_{sa}'(J-1)$	$\begin{array}{c c} R_3(J-I) \\ \hline (I+I)_2 - \end{array}$					1	86.7.0	22.99	75.64	84.41		101 09	ee.101	110:71	119.33	127.92	136.44	145.04	153.56
$^4\Pi_{rac{1}{2}}$	$\binom{r+1}{r}$	$(\operatorname{I} + \operatorname{L})_{\operatorname{\mathcal{E}S}} A^{\operatorname{\mathcal{O}}} - $		26.84	35.74	44.69	53.57	62.44	71.94	171	90.08	88.84	97.49	106.18	114.91	123.50	139.99		140.84	
	$egin{align*} A_2 F_{sc}''(J) \ = F_{sc}''(J) \ - F_{sc}'' \end{array}$	$(\operatorname{I}-\operatorname{L})_{\ell\flat} \Omega^{arepsilon} - (\operatorname{I}+\operatorname{L})_{\ell\flat} \Omega^{arphi} -$	17.91	26.70	35.82	44.67	53.50	62.44	70.17	17.1	80.08	98.88	69.46	106.33	115.07					
	J+1) $I''(J-1)$	$(\mathrm{I}-\mathrm{L})_{\mathtt{2}\mathtt{4}}A^{\mathtt{T}} = (\mathrm{I}+\mathrm{L})_{\mathtt{2}\mathtt{4}}A^{\mathtt{T}} =$		25.73	34.34	42.87	51.44	60.31	88.78	01.00										
state	$ \begin{vmatrix} A_2 F_{2a}''(J) \\ = F_{2a}'(J+1) \\ - F_{2a}''(J-1) \end{vmatrix} $	$(I-L)_2 A - (I+L)_2 A -$		25.72	34.30	42.81	51.55	60.16	00.00	00.00	77.34	86.00	94.55	103.19	111.61	120.37	198.81	10.071	137.46	
$^4II_{rac{3}{2}}$ state	$\begin{pmatrix} J+1 \\ Z'' \end{pmatrix}$	$(I-L)_{\underline{z}\underline{l}}A^{\varrho} \\ (I+L)_{\underline{z}\underline{l}}A^{\varrho} -$	12.55	30.07	38.59	47.90	02.74	55.77	64.45	73.07	81.75	96.00	06.00	98.92	107-39	116.00	124.62	133.04		The second second
	$A_2F_{2c}''(J) = F_{2c}'(J) - F_{2c}$	$ \frac{(\operatorname{I}-\operatorname{L})_{2\mathcal{E}} \mathcal{A}^{\mathcal{E}}}{(\operatorname{I}+\operatorname{L})_{2\mathcal{E}} \mathcal{A}^{\mathcal{D}} -} $		30.03	38.65) L	62.74	55.86	64.47	73.07	81.62	06.00	07.00	98.84	107-39	115.97				
	$J+1 \choose 1d(J-1)$	$\begin{pmatrix} (\mathrm{I}\!-\!L)_{1\mathrm{g}}\!A^{\mathrm{T}} \\ (\mathrm{I}\!+\!L)_{1\mathrm{g}}\!A^{\mathrm{A}} - \end{pmatrix}$			36.99	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	40.31	53.66	62.01	70.47		10.00	16.16					_		
$^4arPi_{_{ m 2}}$ state	$A_2F_{1d}''(J) = F_{1d}'' - F_{1d}''$	$R_{\rm I}(I-L)_{\rm I}A = (I-L)_{\rm I}A$		28.78	37.06) 4 •) 4	45.40	53.71	62.06	70.49	78.94	0 0	86.16	95.82	104.21	112.59			138.05	146.55
4 Π_{\S}	$J+1 \choose 1^{\sigma}(J-1)$	$(I-L)_{I\flat}A^{U}$ $(I+L)_{I\flat}A^{s}-$									MARKET IN THE STATE OF THE STAT									
	$A_2F_{1c}''(J) = F_{1c}'' - F_{1c}''$	$(I-L)_{12}A^{2}$ $(I+L)_{12}A^{9}-$			32.77	41.11	49.53	827.88	00.10	\$2.00	74.68	83.14	82.16	100.00	108.54					
		7	2.8.4. 5.5.5.	. v. c.		9.00	10.5 11.5	12.5	14.5	15.5 16.5	17.5	19.5	20:5 21:5	22.5 23.5	$\begin{array}{c} 24.5 \\ 25.5 \end{array}$	26.5	28.5	30.5 30.5	31.5 32.5	33.5 34.5

1.	**********	494	4 THOM	AS E. I	/E/	/IN	ON	R	ΟT	ΆΤ	IOI	NAI	A	NA	LY	SIS	OF	T	HF	1				
		J+1)	$ \begin{vmatrix} (\mathbf{I} - \mathbf{L})_{\mathbf{i}2} \mathbf{A}^{\mathbf{d}} \\ (\mathbf{I} + \mathbf{L})_{\mathbf{i}2} \mathbf{d}^{\mathbf{N}} - \end{vmatrix} $	90	06.17	37.28	46.48	00.00	64-74	73.76														
	state	$ \begin{vmatrix} A_2 F''_{4d}(J) \\ = F''_{4d}(J+1) \\ - F''_{4d}(J-1) \end{vmatrix} $	$(I-L)_{\flat}A - (I-L)_{\flat}A$	100	68.17	37.27	46.49	00.00	64.80	73.88	82.81	89.16	100.60	109.46	118.22	127.00	135.81							
	$^{4}II_{-\frac{1}{2}}$	J+1 $\sigma(J-1)$	$\begin{pmatrix} (I-I)_{\flat\ell} \mathfrak{A}^{\wp} \\ (I+I)_{\flat\ell} q^{\wp} - \end{pmatrix}$	23.34	32.63	41.91	51.12	60.21	69-33	78.36	2 6.0	0 0	17.06											
		$\Delta_2 F_{4c}''(J) = F_{4c}''$ $= F_{4c}''$	$(I-L)_{\flat_{\mathbf{I}}} A^{o} $ $(I+L)_{\flat_{\mathbf{I}}} A^{M} -$		where a disconnection	42.03		-				entrementer sous à salan					monado da ser escar							
		$J+1 \choose 3d(J-1)$	$\begin{pmatrix} (\mathbf{I} - \mathbf{L})_{\varepsilon_{\mathbf{I}}} A^{q} \\ (\mathbf{I} + \mathbf{L})_{\varepsilon_{\mathbf{I}}} q^{N} - \end{pmatrix}$	22.52		40.17	49.16	58.08	98-99	75.74														
	$^4H_{rac{1}{2}}$ state	$A_2 F_{sa}''(J) = F_{sa}''(J+1) - F_{sa}''(J-1)$	$(1-L)_{\varepsilon}A - (1-L)_{\varepsilon}A$						67.13	75.68	84.47	10.00	17.66	06.101	110.94	119.29	127.90	136.52	145.18					
	$^4\Pi_{rac{1}{2}}$ S	$J+1 \choose s_e (J-1)$	$(\mathrm{I} - \mathrm{U})_{\epsilon\epsilon} A^{\wp} = (\mathrm{I} + \mathrm{U})_{\epsilon\epsilon} A^{\wp} - (\mathrm{I} + \mathrm{U})_{\epsilon\epsilon} A^{\wp} = (\mathrm{I} + \mathrm{U})_{\epsilon\epsilon} $	96 20.96	1 0	87.09	44.04 53.56	69 46	02.40	71.28	80.11	88.85	97.62	106.43	114.87	123.54	132.28							STEERING STATE OF THE STATE OF
		$egin{align*} A_2F_{sc}''(J) \ =F_{sc}''(J+1) \ -F_{sc}''(J-1) \ \end{pmatrix}$	$\frac{(\mathrm{I}\!-\!\mathrm{L})_{\varepsilon\flat}A^{\varrho}}{(\mathrm{I}\!+\!\mathrm{L})_{\varepsilon\flat}q^{\varrho}-}$	17.85	1 - 1	07.09	53.60	00 00	16.20	71.32	80.04	80.68	97.70	106.40	114.88	123.52	132.30				-			***************************************
		$= F_{2d}''(J) \ -F_{2d}'(J+1) \ -F_{2d}''(J-1)$		9 9 9	0 0	34.30	51.66	00.00	87.00	06.89	77.55								White was a second second	200 a 20				
	$^4\Pi_{rac{3}{8}}$ state	$A_2F_{2a}''(J) = F_{2a}'' - F_{2a}''$	$(I-L)_2 A - (I+L)_2 A -$							68.78	77.43	85.98	94.53	103.13	1111-71	120.36	128.82	197.99	66./61	145.64	154.29			
	4 <i>III</i>	$F_{2c}^{(J+1)}$	$(\mathrm{I}\!-\!\mathrm{L})_{\mathtt{2}\mathtt{I}} A^{\varrho} = (\mathrm{I}\!+\!\mathrm{L})_{\mathtt{2}\mathtt{I}} A^{\varrho} -$			38.65	47.28	55.88	64.45	73.16	81.74	96.00	08.70	67.06	107.49	115.91	124.58	133.03						
1		$A_2 F_{2c}''(J) = F_{2c}''(J) - F_{2c}''(J)$	$(\mathrm{I} - \mathrm{L})_{2\mathcal{E}} A^{\mathcal{E}} - (\mathrm{I} + \mathrm{L})_{2\mathcal{E}} A^{\mathcal{E}} -$			38.63	47.35	55.85	64.40	73.09	81.79	20.00	08.09	76.06	107.42	116.02	124.55	133.06						
		$F''_{1d}(J+1) = F''_{1d}(J-1)$	$({ m I}\!-\!{\it L})_{1\it E}\!{\it A}^{T} - ({ m I}\!-\!{\it L})_{1\it E}\!{\it A}^{R} -$	20.03	28.62	37.24		53.67		70.47	78.87	Minister Wasserschaft Manier					,							
	$^4arPi_{rac{5}{8}}$ state	$A_2 F_{1d}''(J) = F_{1d}'(C) - F_1''$	$(I-L)_1 A - (I-L)_1 A$	20.27	28.70	37.09	45.33	53.75	62.11	70.47	78.91	87.38	08.01	16.06	104.28	112.75	121.14	129.59	138.06	146.47	2 2 2 2	06.401	103.34	171.49
	4II §	$F_{r_e}^{(J+1)} = F_{r_e}^{(J+1)} = F_{r_e}^{(J+1)}$	$(I-L)_{1}A^{U}$ $(I+L)_{1}A^{S}$			11 01	10.14								-									AND THE PARTY OF T
		$A_2 F_{1c}''(J)$ $= F_{1c}''$ $- F$	$(I-L)_{12}A^{2} - (I+L)_{12}A^{2} -$	63.76	1 6	00.70	41.17	2 2 2	00.10	66.21	74.71	83.12	91.51	100.04	108.41	117.00	125.41	199.60	00.661	142.13				
			7	24 64 70 70 70 70 70	6.0 1.0 1.0		10.5 1.55	12.5	5.41	15·5 16·5	17.5	19.5	22.65 5.75 5.75	23.5	25.5 25.5	26.5 27.5	28.5 29.5	30·5	32.5	33:5 34:5	35.5	37.5 37.5	39.5 39.5	40.5

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY A

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES TRANSACTIONS SOCIETY A

Table XVIII. $\varDelta_2F''(J)$ values for the v''=1 level from the $(0,\,1)$ band

	$J+1 \choose 4d(J-1)$	$\begin{pmatrix} (\mathbf{I} - \mathbf{U})_{\flat 2} A^{q} \\ (\mathbf{I} + \mathbf{U})_{\flat 2} q^{N} - \end{pmatrix}$	27.43 36.69 45.87 54.83 72.63
$^4II_{-\frac{1}{2}}$ state	$ \Delta_{2}F_{4d}''(J) \\ = F_{4d}'(J+1) \\ - F_{4d}'(J-1) $	$(I-L)_{\flat}A = (I-L)_{\flat}A$	27.66 36.77 45.76 54.90 63.82 72.69 81.58 90.41 99.17 116.48 115.23
4II-	$J+1$) $I_{c}(J-1)$	$(I-L)_{\flat \epsilon} q^{o} - (I+L)_{\flat \epsilon} q^{o} -$	22.97 32.16 41.29 50.31 59.34 68.28 77.25 86.03 94.77 103.60
	$A_2F_{4c}''(J) = F_{4c}'(J) - F_4'$	$\begin{pmatrix} (I-L)_{i_1} A^{0} \\ (I+L)_{i_1} q^{M} - \end{pmatrix}$	32.26
	a(J+1)	$\begin{pmatrix} (I-L)_{\epsilon I}A^{q} \\ (I+L)_{\epsilon I}q^{N} - \end{pmatrix}$	30-89 39-70 48-55 57-18 65-96 65-96 83-23
$^4H_{\frac{1}{2}}$ state	$ \begin{vmatrix} A_2 F_{sd}''(J) \\ = F_{sd}''(J+1) \\ -F_{sd}''(J-1) \end{vmatrix} $	$\begin{pmatrix} (1-L)_{\mathcal{E}}A \\ (1+L)_{\mathcal{E}}q - \end{pmatrix}$	65.84 74.55 83.18 91.85 109.01 117.61 126.03 134.54 143.01
$^4III_{rac{1}{2}}$	$F_{3c}^{(J+1)}(J+1)$	$(I-L)_{\varepsilon\varsigma} A^{\varrho} - (I+L)_{\varepsilon\varsigma} $	26·40 35·22 44·14 52·91 61·56 70·20 78·93 87·59 96·19 104·68 113·39 121·96 130·30
	$A_2F_{3c}''(J)$ $=F_{3c}''$ $-F_{4c}$	$(I-L)_{\varepsilon_{t}}A^{\varepsilon}$ $(I+L)_{\varepsilon_{t}}q^{\varrho}$	26.49 35.28 44.08 52.81 61.54 70.19 78.93 87.56 96.24 104.78
	$ A_2 F_{2a}''(J) \\ = F_{2a}''(J+1) \\ - F_{2a}''(J-1) $	$(I-L)_{\underline{\varsigma}_{1}}A^{T}-(I+L)_{\underline{\varsigma}_{2}}A^{A}-$	25.42 33.95 42.08 50.83 - 76.29
$^4II_{rac{5}{2}}$ state	$\begin{vmatrix} A_2 F_{2a}''(J) \\ = F_{2a}'' \\ F \end{vmatrix}$	$(I-L)_2 A = (I-L)_2 A - (I+L)_2 A - (I+L$	76.39 84.80 93.25 110.19 118.57 127.03 135.36 143.82 160.31
$^4H_{rac{3}{2}}$	$\stackrel{(J+1)}{\stackrel{\gamma'''}{}_{2c}(J-1)}$	$(I-L)_{21}Q^{o} - (I+L)_{21}Q^{o} -$	38·11 46·60 55·17 63·63 72·09 80·51 89·01 97·55 105·85
	$\Delta_2 F_{2c}''(J) = F_{2c}'' - \overline{F}$	$(1-L)_{22} R^2 - (1+L)_{22} T^2$	29.59 37.91 46.58 55.09 63.53 72.03 89.01 97.49 105.97 114.38
	$J+1 \choose 2 d d d d d d d$	$\begin{matrix} (I\!-\!L)_{1t} \! A^T \\ (I\!+\!L)_{1t} \! q^{A} - \end{matrix}$	28-29 ————————————————————————————————————
$^4H_{rac{5}{8}}$ state	$ \begin{vmatrix} A_2 F_{1a}''(J) \\ = F_{1a}'' \\ - F_{1a} \end{vmatrix} $	$R_1(J-I)_1 - I_1(J+I)$	28·50 36·56 44·73 53·03 61·28 69·52 77·84 86·17 94·51 110·51 119·51 127·83 136·14 144·42
$^{4}\Pi_{rac{5}{2}}$	$J_{1c}^{(j)}(J+1)$	$(I-L)_{I\flat}A^{U}$	
	$A_2F_{1c}''(J) = F_{1c}'' - F_{1c}''$	$(I-L)_{12}A^2$ $(I+L)_{12}A^9-$	32.46 40.64 48.81 57.12 65.33 73.71 81.99 90.31 98.67 107.02
7/	ol. CCXX	XVII. A.	95 95 95 95 95 95 95 95 95 95

496

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL TRANSACTIONS SOCIETY

= 0 level from the (0, 0) band Table XIX. $A_1F''(J+\frac{1}{2})$ values in the ${}^4\Pi$ state for the v''

 $\left| \frac{R_2(J) - Q_2(J+1)}{{}^RQ_{32}(J) - {}^QP_{32}(J+1)} \right| \frac{{}^PQ_{12}(J) - \left| \frac{TR_{42}(J) - \left| Q_2(J) - \left| Q_2(J) - \left| Q_{R12}(J) - \left| SR_{32}(J) - \left| SQ_{42}(J) - S$ 13.9518.2622.4926.6731.1735.4539.62 $\varDelta_1 F_{2dc}''(J+\frac{1}{2}) = F_{2d}''(J+1) - F_{2c}''(J)$ 13.9318.2822.5731.1435.4539.6948.32 26.8444.07 52.6656.879.4513.9622.5535.44 39.75 44.08 4.9618.23 26.8431.1748.37 52.6356.9461.3265.4239.7256.8813.91 18.2022.4426.87 31.1435.47 44.07 48.34 52.6769.8261.27 $^4\Pi_{\$}$ state 11.7816.0820.3829.1446.1524.77 33.33 41.97 $\varDelta_1 F_{2cd}^{''}(J+\tfrac{1}{2}) = F_{2c}^{''}(J+1) - F_{2d}^{''}(J)$ 7.5911.8216.1120.4024.6528.9333.2837.6342.0046.2850.5554.76 59.0667.6263.30 76.107.5816.1024.6859.1020.37 29.0233.33 37.6241.9350.5254.7363.36 67.6411.8146.21 $R_1(J) - \left| \begin{smallmatrix} RQ_{21}(J) - & ^RQ_{21}(J) - & ^TR_{31}(J) - & ^TQ_{41}(J) - & Q_{1}(J) - & Q_{12}(J) - ^RQ_{21}(J+1) \\ Q_1(J+1) & ^QP_{21}(J+1) & ^SQ_{31}(J+1) & ^SP_{41}(J+1) & P_1(J+1) & ^SQ_{31}(J) - ^RP_{31}(J+1) & ^TQ_{41}(J+1) \\ \end{smallmatrix} \right|$ $\varDelta_1 F_{1dc}''(J+\frac{1}{2}) = F_{1d}''(J+1) - F_{1c}''(J)$ 15.3619.5223.75 32.0936.30 40.5244.75 48.98 53.2427.9115.44 23.7827.86 36.3253.1557.2861.6865.9670.1611.3319.5932.1040.5244.75 49.00 74.37 82.83 86.9578.57 $^4H_{5\over 5}$ state 25.79 $A_1 F_{1cd}''(J+\frac{1}{2}) = F_{1c}'' \; (J+1) - F_{1d}''(J)$ 17.47 21.5629.9242.6225.77 34.1725.78 34.1551.0859.5367.8829.9938.3842.6246.8355.30 13.34 17.41 21.6017.47 21.6225.8529.9634.1738.4242.6346.8251.0668.7913.3455.31 MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Table XIX (cont.)

				(21	- 1	GA			SAIN			IGI.					ΛΥ					497	
	$F_{4c}''(J)$	$Q_4(J) - \left egin{array}{c} Q_{44}(J) - & ^Q R_{34}(J) - & ^Q Q_{24}(J) - & ^Q R_{14}(J) - & ^D Q_{24}(J+1) & ^D Q_{24}$		10.490	ownlo	aded 5.61	from r	sta.ro	yalso	ciety	oublis	hing.c	org						an an ing a san at makeun				andro-Saran E-Sara-Sar
	$A_1 F_{ddc}''(J + \frac{1}{2}) = F_{dd}''(J + 1) - F_{dc}''(J)$	${}^{o}Q_{24}(J)_{-} \ {}^{N}P_{24}(J+1)$		10.38	15.01	19.55	24.10	28.74	33.90	01 00	01.16	42.11											
	$(J + \frac{1}{2}) = F$	${}^{Q}R_{34}(J) - {}^{P}Q_{34}(J+1)$	5.66	10.42	14.98	19.61	24.20	28.73	33.32	10.00	±0.70	42.72 52.03 60 60 60 60 60 60 60 60 60 60 60 60 60	40.09	51.08	55.44	59.88	64.13						
⁴ $H_{-\frac{1}{2}}$ state	$A_1 F_{4ar{a}c}^{''}$	$\left. \begin{array}{c} Q_4(J) - \\ P_4(J+1) \end{array} \right $		10.49	14.97	19.63	24.19	28.75	33.27	19.76	10.16	42.10	e0.0 1	50.97	55.49	59.84	64.21		-				
$^{4}\Pi^{-}$	$F_{4d}''(J)$	$^{N}Q_{14}(J)_{-} \ ^{M}P_{14}(J+1)$			13.00																		
	$A_1 F_{4cd}''(J+\frac{1}{2}) = F_{4c}''(J+1) - F_{4d}''(J)$	$R_4(J) - \left {PR_{24}(J) - ^0Q_{24}(J+1) \over ^PQ_{34}(J) - ^0P_{34}(J+1)} \right $	3.47*	8.21*	12.90	17.65	22.33	26.92	31.52	36.08	40.63	45.12	49.58	54.08									
,	$A_1 F_{4cd}^{''}$	$R_4(J) - Q_4(J+1)$				17.56	22.31	26.92	31.49	36.12	40.61	45.07	49.56	53.97	58.42	69.76		21.70					
	$F_{3c}^{''}(J)$	$(J)_{(J+1)} \begin{vmatrix} sR_{43}(J) - \\ RQ_{43}(J+1) \end{vmatrix}$		7.79	12.07	16.72	21.10	25.51	29.93	34.33	38.75	43.10	47.47	51.87	56.18								The second second
	$r_{3d}^{"}(J+1) -$	$^{o}Q_{13}(J)_{-} - ^{o}N_{P_{13}(J+1)}$			12.29	16.58	21.09	25.53	29.96	34.46	38.81		47.56										
ate	$A_1 F_{3dc}''(J + \frac{1}{2}) = F_{3d}''(J + 1) - F_{3c}''(J)$	$ \frac{R_3(J) - \left(\frac{RQ_{43}(J) - \left(\frac{PQ_{23}(J) - \left(\frac{PR_{13}(J) - \left(\frac{PR_{13}(J) - \left(\frac{Q_3(J) - P_3(J + 1)}{Q_{23}(J + 1)}\right) Q_{13}(J + 1)\right)}{Q_{13}(J + 1)}\right)}{Q_{13}(J + 1)} \right) \frac{Q_3(J) - P_3(J + 1)}{Q_{23}(J) - P_{23}(J + 1)} $		7.63	12.14	16.58	21.08	25.56	29.95	34.33	38.75	43.09	47.48	51.82	56.18	60.40) Z	C7.#0	69.07	73.32	77.53	81.86	85.12
$^4arPi_{rac{1}{2}}$ state	$ ag{9a}_{3d}(J)$	${}^{P}\!R_{13}(J) - \ {}^{o}Q_{13}(J{+}1)$	5.52	10.17	14.68	19.09	23.53	27.99	32.45	36.93	41.26	45.81											
	$\frac{w}{3c}(J+1)-I$	$^{P}Q_{23}(J)-\ ^{o}P_{23}(J+1)$	5.44	10.10	14.70	19.16	23.61	28.01	32.49	36.91	41.31	45.75	20.01	10.00	54.36	58.73	63.10	67.47	71.77			The second se	
	$A_1 F_{scd}''(J + \frac{1}{2}) = F_{sc}''(J + 1) - F_{sd}''(J)$	${}^{\scriptscriptstyle R}\!Q_{43}(J)_{-} \ {}^{\scriptscriptstyle Q}\!P_{43}(J+1)$	5.67	10.12	14.63	19.10	23.57	27.99	32.51	36.94	41.33	45.76	50.03	77.0¢	54.46	58.89	63.33	67.37	71.81	76.04		are a second and a second and a second and	
	$A_1F_{3c}^{''}$	$R_3(J) - Q_3(J+1)$						28.03	32.44	36.89	41.32		50.11	11.00	54.53	58.93	63.17	67.37	71.72	76.03			
	J		0.5	21 tê 75 75	4.5 5.5	6.5 7.5	9.55 5.55	$\frac{10.5}{11.5}$	12.5 13.5	14·5 15·5	16.5	18.5	20.5	22.5	23.5 24.5	25.5 26.5	27.5	29.5	30.5 31.5	32.5 33.5	34.5	36.5 27.5 37.5	38.5

* ${}^{p}Q_{34}(J) - {}^{0}P_{34}(J+1)$ only.

The letters which appear in some cases after the intensity figure have the following meanings: b, blend of two or more lines which appears comparatively sharp; d, diffuse line; c, line confused with another line which may affect both the wave-length and the intensity; v, line shaded towards the violet.

The initial ${}^4\varSigma$ state

The combination differences for the initial state derived from equations 1 and 2 are as follows:

$$\begin{split} &\varDelta_{2}F_{1}'(K)=4B_{v}'(K+\frac{1}{2})+8D_{v}'(K+\frac{1}{2})^{3}-\frac{18\epsilon}{(2K+1)(2K+5)}+6\gamma,\\ &\varDelta_{2}F_{2}'(K)=4B_{v}'(K+\frac{1}{2})+8D_{v}'(K+\frac{1}{2})^{3}-\frac{18\epsilon}{(2K+1)(2K+5)}+2\gamma,\\ &\varDelta_{2}F_{3}'(K)=4B_{v}'(K+\frac{1}{2})+8D_{v}'(K+\frac{1}{2})^{3}+\frac{18\epsilon}{(2K+1)(2K-3)}-2\gamma,\\ &\varDelta_{2}F_{4}'(K)=4B_{v}'(K+\frac{1}{2})+8D_{v}'(K+\frac{1}{2})^{3}+\frac{18\epsilon}{(2K+1)(2K-3)}-6\gamma. \end{split}$$

It is shown later that $\epsilon=0.1487$ cm.⁻¹ and $\gamma=-0.00033$ cm.⁻¹, so that, except for the very lowest values of K, the sum of the third and fourth terms in these expressions can be neglected. Inspection of Tables XIII–XV shows that the four values of $\Delta_2 F_i'(J)$ which correspond to the same value of K are in fact equal when K is greater than four. Accordingly we can write

$$\Delta_2 F'(K) = 4B_v'(K + \frac{1}{2}) + 8D_v'(K + \frac{1}{2})^3.$$
 (6)

Taking as $\Delta_2 F'(K)$ the average of the four values of $\Delta_2 F'_i(K)$ the graph of $\Delta_2 F'(K)/K + \frac{1}{2}$ against $(K + \frac{1}{2})^2$ is plotted. It is a straight line from the slope of which D'_v is found. B'_v is found by the method of Büttenbender and Herzberg (1935). Taking an approximate value of B which we call \tilde{B} , the correction to give the true value of B is ΔB . A graph of the expression

$$\Delta_2 F'(K) - 8D_v'(K + \frac{1}{2}) - 4\tilde{B}(K + \frac{1}{2}) = 4\Delta B(K + \frac{1}{2})$$

against $K + \frac{1}{2}$ is a straight line passing through the origin with slope $4\Delta B$ from which

$$B_v' = \tilde{B}_v' + \Delta B_v'.$$

From equations (2) we get

$$\Delta f_{21}'(K) = F_2'(K) - F_1'(K) = 3\epsilon - 3\gamma - 3\gamma K,$$

$$\Delta f_{23}'(K) = F_2'(K) - F_3'(K) = \frac{9\epsilon(2K+1)}{(2K+3)(2K-1)} + \gamma + 2\gamma K,$$

$$\Delta f_{34}'(K) = F_3'(K) - F_4'(K) = 3\epsilon - \gamma + 2\gamma K.$$
(7)

the branches

 $\Delta f'_{21}(K)$ and $\Delta f'_{34}(K)$ are derived from the following relations between the lines of

$$\begin{split} \varDelta f_{21}'(K'=J-\tfrac{3}{2}) &= {}^{Q}P_{21}(J) - Q_{1}(J) = {}^{R}Q_{21}(J-1) - R_{1}(J-1) = P_{2}(J) - {}^{P}Q_{21}(J) \\ &= Q_{2}(J-1) - {}^{Q}R_{12}(J-1) = {}^{O}P_{23}(J) - {}^{O}Q_{13}(J) \\ &= {}^{P}Q_{23}(J-1) - {}^{P}R_{13}(J-1) = {}^{N}P_{24}(J) - {}^{N}Q_{14}(J) \\ &= {}^{O}Q_{24}(J-1) - {}^{O}R_{14}(J-1), \\ \varDelta f_{34}'(K'=J+\tfrac{3}{2}) &= {}^{T}R_{31}(J) - {}^{T}Q_{41}(J) = {}^{S}Q_{31}(J+1) - {}^{S}P_{41}(J+1) \\ &= {}^{S}R_{32}(J) - {}^{S}Q_{42}(J) = {}^{R}Q_{32}(J+1) - {}^{R}P_{42}(J+1) \\ &= R_{3}(J) - {}^{R}Q_{43}(J) = Q_{3}(J+1) - {}^{Q}P_{43}(J+1) \\ &= {}^{Q}R_{34}(J) - Q_{4}(J) = {}^{P}Q_{34}(J+1) - P_{4}(J+1). \end{split}$$

The average values of $\Delta f'_{21}(K)$ and $\Delta f'_{34}(K)$ derived from the initial levels v'=0 and v'=1 are shown in fig. 3. The lines drawn through the points represent the theoretical curves with $\epsilon=0.1487$ and $\gamma=-0.00033$. Bearing in mind the number of blends in the observed branches the agreement is as good as can be expected.

Fig. 3. Graphs showing the structure of the $^4\Sigma$ state. The points represent the average of the observed values of $\Delta f_{21}(K)$ and $\Delta f_{34}(K)$ for the levels v'=0 and v''=1. The curves represent the theoretical values given by equations (7) where $\epsilon=0.1487$ cm.⁻¹ and $\gamma=-0.00033$ cm.⁻¹.

Examination of the expression for $\Delta f'_{23}(K)$ shows that the separation of the levels $F'_2(K)$ and $F'_3(K)$ decreases rapidly with increasing K. Substitution of the values of ϵ and γ gives for the separation 0.81 cm.⁻¹, 0.21 cm.⁻¹ and 0.13 cm.⁻¹ for K' = 1, 3, and 5 respectively. For values of K' greater than 5 the branches which start from the levels $F'_2(K)$ and $F'_3(K)$ and which are listed together at the head of a single column in Tables I—XII should be blended together so that only one line results. This is confirmed by the manner in which the lines in the column are used in forming the combination relations in Tables XIII—XIX. For example, the lines in column seven

of Table I are treated in column nine of Table XIII as belonging to the ${}^{P}R_{24}$ branch and in column thirteen of Table XIX (cont.) as belonging to the ${}^{p}Q_{34}$ branch. The branches should be separated from one another, however, for K'=1 and 3 and in favourable cases for K'=5. In no case, however, has a doubling of the lines been observed for these values of K and the footnotes to the tables indicate the branch to which the observed lines have been assigned. It seems that the corresponding lines of the other branch involved are too faint to observe. It can readily be seen from equations (2) that $\Delta f'_{14}(K) = \Delta f'_{23}(K)$ so that the initial levels $F'_1(K)$ and $F'_4(K)$ are blended together for K' > 5.

The final ${}^4{\it \Pi}$ state

In the (1, 0) and (0, 0) bands the first line in the ${}^{P}Q_{34}$ branch corresponds to $J = \frac{1}{2}$ and the first line in the ${}^{Q}R_{34}$ branch to $J=\frac{3}{2}$. In the (1,0) band the first lines in the ${}^{o}Q_{24}$ and Q_{4} branches correspond to $J=\frac{3}{2}$. These are the values of J at which these branches should begin if the ${}^4\Pi$ state is inverted. None of the lines should be observed for a normal ${}^4\Pi$ state the ${}^PQ_{34}$ branch beginning with $J=\frac{5}{2}$ and the ${}^OQ_{24}$, Q_4 and ${}^QR_{34}$ branches with $J=\frac{7}{2}$. As all the lines in question have been used only once in the analysis we conclude that the ⁴II level is inverted. The four components of each band are assigned to the transitions ${}^{4}\Sigma \rightarrow {}^{4}\Pi_{\frac{1}{3}}$, ${}^{4}\Sigma \rightarrow {}^{4}\Pi_{\frac{1}{3}}$, ${}^{4}\Sigma \rightarrow {}^{4}\Pi_{\frac{1}{2}}$, ${}^{4}\Sigma \rightarrow {}^{4}\Pi_{-\frac{1}{2}}$ as shown in Tables I–XII.

The expressions for the combination differences derived from equations (4) are very complicated. It can be shown however that $\Delta_2 F_m''(J)$, the average of the four values of $\Delta_2 F_i''(J)$, is given by

$$\Delta_2 F_m''(J) = 4B_n''(J + \frac{1}{2}) + 8D_n''(J + \frac{1}{2})^3. \tag{8}$$

It can be seen from Tables XVI–XVIII that if $\Delta_2 F_{ic}(J)$ is present for a particular value of J, $\Delta_2 F_{id}(J)$ is missing and vice versa. The missing values in both cases are obtained by interpolation and a complete table of values of $A_2 F_c(J)$ and $A_2 F_d(J)$ is formed for each of the four substates. The average of the eight values of $\Delta_2 F(J)$ is taken as $\Delta_2 F_m(J)$. The graph of $\Delta_2 F_m(J)/J + \frac{1}{2}$ against $(J + \frac{1}{2})^2$ is a straight line for each of the levels v''=0 and v''=1. B_v'' and D_v'' are evaluated by the method described in the previous section.

To determine the constant Y = A/B we use a method similar to that used by Budó (1935a) for triplet states. From equations (4)

$$\Delta F_{41}''(J) = F_4''(J) - F_1''(J) = 3B_v'' \left\{ y_1 + 4J(J+1) + \frac{23}{9} + \frac{2\delta}{9} \right\}^{\frac{1}{2}} + 12D_v''(J+\frac{1}{2})^3, \quad (9a)$$

$$\Delta F_{32}''(J) = F_3''(J) - F_2''(J) = B_v''(J + 4J(J+1) - 5 - 2\delta)^{\frac{1}{2}} + 4D_v''(J + \frac{1}{2})^3.$$
 (9b)

The analysis gives

$$\begin{split} \varDelta F_{41cd}(J) &= F_{4c}''(J) - F_{1d}''(J) = P_1(J) - {}^{M}P_{14}(J) = R_1(J) - {}^{o}R_{14}(J) = {}^{R}Q_{21}(J) - {}^{o}Q_{24}(J) \\ &= {}^{R}P_{31}(J) - {}^{o}P_{34}(J) = {}^{T}R_{31}(J) - {}^{Q}R_{34}(J) = {}^{T}Q_{41}(J) - Q_4(J), \\ \varDelta F_{41dc}(J) &= F_{4d}''(J) - F_{1c}''(J) = Q_1(J) - {}^{N}Q_{14}(J) = {}^{Q}P_{21}(J) - {}^{N}P_{24}(J) = {}^{S}R_{21}(J) - {}^{P}R_{24}(J) \\ &= {}^{S}Q_{31}(J) - {}^{P}Q_{34}(J) = {}^{S}P_{41}(J) - P_4(J) = {}^{U}R_{14}(J) - R_4(J), \end{split}$$

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

$$\begin{split} \Delta F_{32cd}''(J) &= F_{3c}''(J) - F_{2d}''(J) = P_2(J) - {}^oP_{23}(J) = {}^PQ_{12}(J) - {}^oQ_{13}(J) = R_2(J) - {}^QR_{23}(J) \\ &= {}^RQ_{32}(J) - Q_3(J) = {}^RP_{42}(J) - {}^QP_{43}(J) = {}^TR_{42}(J) - {}^SR_{43}(J), \\ \Delta F_{32dc}''(J) &= F_{3d}''(J) - F_{2c}''(J) = {}^oP_{12}(J) - {}^NP_{13}(J) = Q_2(J) - {}^PQ_{23}(J) = {}^QP_{23}(J) - P_3(J) \\ &= {}^QR_{12}(J) - {}^PR_{13}(J) = {}^SR_{32}(J) - R_3(J) = {}^SQ_{42}(J) - {}^RQ_{43}(J). \end{split}$$

From the expressions (10) a complete table of values of $\Delta F_{41c}(J)$ and $\Delta F_{41d}(J)$ can be calculated with the aid of the results for the Λ -type doubling which are given later using relations of the type

The average of $\Delta F_{41c}''(J)$ and $\Delta F_{41d}''(J)$ is taken as $\Delta F_{41}''(J)$. By a similar method $\Delta F_{32}(J)$ is obtained from equations (11). The value of δ which in the present case is very small can be calculated with an approximate value of A obtained from the overall width of the band. From the values of y_1 given by equations (9a) and (9b) A can be calculated since $y_1 = Y(Y-4)$ and Y = A/B. There are two values of A for the one value of y_1 , one positive and one negative, the latter corresponding to an inverted ${}^4\Pi$ state. The results obtained for A are shown in fig. 4. For the level v'' = 0 the value of A obtained from $\Delta F_{23}''(J)$ is fairly constant and somewhat larger than the value obtained from $\Delta F_{41}''(J)$ which seems to increase almost linearly with J. The results for v''=1 are similar though there seems to be a slow increase in the value of A obtained from $\Delta F_{32}''(J)$.

From equations (4) we get

$$\begin{split} \varDelta F_{21}''(J) - \varDelta F_{43}''(J) &= F_2''(J) - F_1''(J) - [F_4''(J) - F_3''(J)] \\ &= 8 B_v'' \frac{y_2 - 2J(J+1)}{y_1 + 4J(J+1)} - 24 D_v'' J(J+1). \end{split} \tag{12}$$

 $\varDelta F_{21}''(J)$ and $\varDelta F_{43}''(J)$ can be calculated from the branches by the method used for $\Delta F_{41}''(J)$. The observed values of the left-hand side of equation (11) completely fail to agree with the values calculated from the right-hand side. In Table XX are given the observed values of $\Delta F_{21}''(J)$, $\Delta F_{32}''(J)$ and $\Delta F_{43}''(J)$ for the level v''=0. The calculated values are derived from equations (4), the value of y_1 used in the calculations being the average of all the values derived from $\Delta F_{32}''(J)$ and $\Delta F_{41}''(J)$. It is clear that equations

(4) fail to represent the observed structure of the 4H state in O_2^+ . Roughly the interval $F_2''(J) - F_1''(J)$ is less than and the interval $F_4''(J) - F(J_3'')$ greater than the calculated value by $4B_v''\frac{y_2-2J(J+1)}{y_1+4J(J+1)}$. It can be seen from Table XX that the observed values of $\Delta F_{21}''(J)$ and $\Delta F_{32}''(J)$ agree with one another and with the higher values of $\Delta F_{43}''(J)$ almost exactly. Exactly the same result holds good for the level v''=1. Incidentally it may be mentioned that the combination differences $\Delta_2 F_i''(J)$ are represented very well by equations (4) when the term $2B_v''\frac{y_2-2J(J+1)}{y_1+4J(J+1)}$ is omitted.

Fig. 4. Variation of A with J for the levels (a) v'' = 1 and (b) v'' = 0. The circles are values from $\Delta F_{32}(J)$ and the crosses are values derived from $\Delta F_{41}(J)$.

 Λ -type doubling in the ${}^4\Pi$ state

The Λ -type doubling is given by the expression

$$\Delta \nu_{idc}(J) = F_{id}(J) - F_{ic}(J). \tag{13}$$

What is derived from the analysis, however, is the average of the doublings for two successive levels given by

$$\Delta_1 F_{idc}(J+\frac{1}{2}) - \Delta_1 F_{icd}(J+\frac{1}{2}) = F_{id}(J+1) - F_{ic}(J+1) + F_{id}(J) - F_{ic}(J)$$

$$= 2\Delta \nu_{idc}(J+\frac{1}{2}).$$

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

503

Since the doubling is generally small this is practically the same as the value given by equation (13). The values of $\Delta_1 F_{idc}(J+\frac{1}{2})$ which are given by the analysis correspond to the missing values of $\Delta_1 F_{icd}(J+\frac{1}{2})$ and vice versa. In both cases the missing values

TABLE XX. OBSERVED AND CALCULATED VALUES OF $\Delta F_{21}''(J)$, $\Delta F_{32}''(J)$ and $\Delta F_{43}''(J)$

	$\Delta F_2''$	$I_1(J)$	$arDelta F_3''$	$_{2}(J)$	$arDelta F_4'$	$J_3(J)$
$J+\frac{1}{2}$	Obs. cm. ⁻¹	Calc. cm. ⁻¹	Obs. cm. ⁻¹	Calc. cm. ⁻¹	Obs. cm. ⁻¹	Calc. cm. ⁻¹
2					49.35	46.29
3			50.42	50.42	49.86	46.60
4	50.61	54.87	50.74	50.75	50.12	47.03
5	51.28	55.19	51.34	51.18	50.60	47.55
6	51.78	55.58	51.82	51.69	$51 \cdot 12$	48.17
7	$52 \cdot 42$	56.04	52.40	$52 \cdot 32$	51.78	48.88
8	53.11	56.58	$53 \cdot 11$	52.97	52.45	49.74
9	53.86	57.18	53.83	53.73	$53{\cdot}28^{^*}$	50.65
10	54.68	57.85	54.70	54.56	$54 \cdot 14$	51.64
11	55.63	58.58	55.63	55.47	55.08	52.74
12	56.57	59.37	56.55	56.46	$56 \cdot 12$	53.88
13	57:63	60.25	$57 \cdot 62$	57.51	57.20	55.10
14	58.71	61.24	58.72	58.67	58.31	56.38
15	59.87	$62 \cdot 17$	59.87	59.78	59.55	57.71
16	61.09	63.20	$61 \cdot 11$	61.00	60.81	$59 \cdot 11$
17	62.36	64.29	$62 \cdot 39$	$62 \cdot 27$	$62 \cdot 11$	60.55
18	63.68	65.40	63.71	63.56	63.47	62.02
19	65.07	66.65	65.03	64.95	64.93	63.55
20	66.46	67.90	66.45	66.36	66.31	65.11
21	67.89	$69 \cdot 17$	67.88	67.79	67.78	66.71
22	69.41	70.52	69.39	69.28	69.31	68.33
23	70.86	71.86	70.91	70.79	70.87	69.98
24	72.47	$73 \cdot 24$	$72 \cdot 46$	72.31	$72 \cdot 41$	71.63
25	74.01	74·7 0	74.00	73.91	73.97	73.31
26	75.61	76.17	75.59	75.50	75.60	75.06
27	77.19	77.69	77.23	$77 \cdot 12$	$77 \cdot 19$	76.75
28	78.90	79.21	78.88	78.76	78.84	78.52
29	80.55	80.78	80.49	80.43	80.54	80.32
30	82.25	82.34	82.16	82.11	82.36	82.26
31	83.92	83.96	83.96	83.81		
32	85.66	85.60	85.62	85.54		
33	87.21	87.25	87.28	87.27		
34	89.01	88.93	89.20	89.03		
35	90.88	90.56	90.94	90.79		
36	92.77	$92 \cdot 26$	92.63	92.55		
37			94.56	94.34		

had to be interpolated before $\Delta v_{idc}(J+\frac{1}{2})$ could be calculated. The results obtained for the width of the Λ -doublet can be regarded as those which would actually be found if both the c and d levels corresponding to a particular value of J were physically present. The results for the levels v'' = 0 and v'' = 1 are shown in fig. 5. The general trend of the observations are indicated by the lines drawn through the points. The doubling is very small in the ${}^4\varPi_{\frac{5}{2}}$ and ${}^4\varPi_{\frac{3}{2}}$ states. It appears to increase linearly with J in the ${}^4\varPi_{\frac{1}{2}}$ state.

Vol. CCXXXVII. A. 63

In the ${}^4\Pi_{-\frac{1}{2}}$ state it increases at first and finally decreases for the highest values of J. There is a systematic difference between the results for the doubling for v''=0 and v''=1.

There are no theoretical expressions available with which to compare the observations. They resemble, however, the results for ${}^2\Pi$ and ${}^3\Pi$ states in so far as the component of lowest $\Lambda - \Sigma$ has the largest doubling.

Fig. 5. A-type doubling in the ${}^4\Pi$ state. The circles refer to the level v''=0, the doubling being read off from the left-hand side of the graph. The crosses refer to the level v''=1, the doubling being read off from the right-hand side of the graph.

Molecular constants

The constants of the O_2^+ molecule in the initial $^4\Sigma$ and final $^4\Pi$ states obtained from the analysis are given in Table XXI. The values of B_e , α_e , D_e and β_e are determined with the aid of the relations

$$B_e = B_v + \alpha_e(v + \tfrac{1}{2}), \quad D_e = D_v - \beta(v + \tfrac{1}{2}).$$

The values of I_e and r_e are determined from the expressions

$$\mu r_e^2 = I_e = rac{h}{8\pi^2 c B_e}$$
 ,

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

where μ stands for the effective mass of the molecule which is equal to M/2, where M is the mass of the oxygen atom. In the calculation the values given by von Friesen (1937) for h, c and the mass of the hydrogen atom were used.

TABLE XXI. MOLECULAR CONSTANTS

	$^4 \Sigma$ state	⁴∏ state
v = 0	$B_0' = 1.2763 \text{ cm.}^{-1} \ D_0' = -5.92 \times 10^{-6} \text{ cm.}^{-1}$	$B_0'' = 1.0967 \text{ cm.}^{-1}$ $Y \sim 43.8$ $D_0'' = -4.76 \times 10^{-6} \text{ cm.}^{-1}$ $A \sim 48.0$
v=1	$B_1' = 1.2546 \text{ cm.}^{-1}$ $D_1' = -6.30 \times 10^{-6} \text{ cm.}^{-1}$	$B_1'' = 1.0811 \text{ cm.}^{-1}$ $Y \sim 44.4$ $D_1'' = -4.75 \times 10^{-6} \text{ cm.}^{-1}$ $A \sim 48.0$
	$B_e' = 1.2871 \text{ cm.}^{-1}$ $D_e' = -5.73 \times 10^{-6} \text{ cm.}^{-1}$ $\alpha_e' = 0.0217 \text{ cm.}^{-1}$ $\beta_e' = -0.38 \times 10^{-6} \text{ cm.}^{-1}$ $I_e' = 21.70 \times 10^{-40} \text{ g.cm.}^2$ $I_e' = 1.2732 \text{ A}$ $\epsilon = 0.1487 \text{ cm.}^{-1}$ $\gamma = -0.00033 \text{ cm.}^{-1}$	$B_e'' = 1.1046 ext{ cm.}^{-1} \ D_e'' = -4.76 imes 10^{-6} ext{ cm.}^{-1} \ lpha_e'' = 0.0157 ext{ cm.}^{-1} \ eta_e'' ext{ very small} \ I_e'' = 25.28 imes 10^{-40} ext{ g.cm.}^2 \ r_e'' = 1.3743 ext{ A}$

DISCUSSION

The analysis shows that in the initial state of the first negative bands of oxygen the levels with even values of K are missing. As the complete wave function of the molecule must be symmetrical the transition must be either ${}^4\Sigma_g^- \to {}^4\Pi_u$ or ${}^4\Sigma_u^+ \to {}^4\Pi_g$. Mulliken (1932) considers that the electron configuration of O_2 in the normal state is

$$1s\sigma^2\,2p\sigma^2\,2s\sigma^2\,3p\sigma^2\,3d\sigma^2\,2p\pi^4\,3d\pi^2.$$

By removal of a $3d\pi$ electron we get the normal state of $O_2^+ \dots 3d\sigma^2 2p\pi^4 3d\pi^2 \Pi_g$, the lower state of the second negative bands. By removal of a $2p\pi$ electron we get $...3d\sigma^2 2p\pi^3 3d\pi^2 {}^4\Pi_u$ or ${}^2\Pi_u$, the former of which is identified with the lower state of the first negative bands and the latter with the upper state of the second negative bands. By removal of a $3d\sigma$ electron we get ... $3d\sigma 2p\pi^4 2d\pi^2 {}^4\Sigma_g^-$ which is identified with the upper state of the first negative bands. According to Mulliken, then, the transition is $^4\Sigma_g^-\!
ightarrow\!^4\Pi_u$.

The failure of equations (4) to represent the observed structure of the ${}^4\Pi$ state is very surprising especially as the corresponding equations for 3H states are in excellent agreement with observation (Budó 1935 a, b). It appears probable that in the present case

the ⁴II state is perturbed, the rotational levels undergoing a displacement which varies with J in a regular manner. The interval $F_4(J) - F_1(J)$ is approximately three times as great as the interval $F_3(J) - F_2(J)$ as it should be according to equations (4). The main effect of the perturbation is to displace the F_4 levels away from the F_3 levels and the F_2 levels towards the F_1 levels by an amount which can be easily calculated from Table XX. Anomalous separations of the ${}^2\Pi_{\frac{1}{2}}$ and ${}^2\Pi_{\frac{3}{2}}$ components of the A ${}^2\Pi$ state of CO⁺ have been observed by Bulthuis and Coster (1935), the band lines behaving apparently quite normally. They have been explained on the basis of Kronig's theory (1928) as a perturbation produced by the $X^2\Sigma$ state, this type of perturbation occurring when the vibrational levels of the two states do not approach each other too closely. From the rules given by Kronig the perturbing state in the present case must be either ${}^4\Sigma_u^-$, ${}^4\Pi_u$ or ${}^4\Delta_u$. With the exception of ${}^4\Sigma_g^-$ the known states of the O_2^+ molecule dissociate into O in the 3P ground state and O⁺ in the ${}^4S^{\circ}$ ground state ${}^4\Sigma_{g}^{-}$ dissociates into O in the first excited state ¹D which lies about 15,700 cm.⁻¹ above the ³P ground state and O⁺ (⁴S°). If we consider the possible molecular states which can dissociate into O ³P and O⁺ in the first excited state ²D° which lies 26,800 cm. ⁻¹ above the ground state we find one ${}^4\Sigma_n^-$, three ${}^4\Pi_n$ states and two ${}^4\Delta_n$ states. Presumably it is one of these states which causes the perturbation. In the hope of throwing further light on the matter an analysis of the (0, 2) and (0, 3) bands is at present being attempted.

It will be observed from Tables II, III, VI, VII, X and XI, that the intensity of the R_3 and P_2 branches is very low. This is in accordance with the theoretical intensity factors given by Budó (1937). In general it may be said that the observed intensities of the various branches agree with the intensities to be expected theoretically when one assumes that the ${}^4\Pi$ state is intermediate between case a and case b.

In conclusion I should like to express my thanks to Professor J. J. Nolan for his interest in this work.

Summary

The (1, 0), (0, 0) and (0, 1) bands of the first negative system of O_2^+ have been photographed in the second order of a 21 ft. grating.

Each of the bands has been analysed into forty branches, the transition involved being ${}^4\Sigma \rightarrow {}^4\Pi$.

The fine structure of the ${}^4\Sigma$ level agrees with the theoretical structure predicted by Budó.

The ${}^4\Pi$ level is inverted. The structure of the level does not agree with that to be expected on theoretical grounds from formulae given by Brandt and Budó. It is suggested that this disagreement is caused by a perturbation similar to that observed by Bulthuis and Coster in the $A^{2}\Pi$ level of CO⁺.

The constants of O_2^+ in the ${}^4\Sigma$ and ${}^4\Pi$ states are tabulated.

FIRST NEGATIVE BAND SPECTRUM OF OXYGEN

507

REFERENCES

Bozoky, L. and Schmid, R. 1935 Phys. Rev. 48, 465.

Brandt, W. H. 1936 Phys. Rev. 50, 778.

Budó, A. 1935 a Z. Phys. 96, 219.

— 1935 b Z. Phys. 98, 437.

— 1937 Z. Phys. 105, 73.

Bulthuis, H. and Coster, D. 1935 Verhandelingen op 25 Mei 1935.

Aangeboden aan Prof. P. Zeeman, p. 135.

Büttenbender, G. and Herzberg, G. 1935 Ann. Phys., Lpz., 21, 577.

Frerichs, R. 1926 Z. Phys. 35, 683.

von Friesen, S. 1937 Proc. Roy. Soc. A, 160, 424.

Kronig, R. 1928 Z. Phys. 50, 347.

Mulliken, R. S. 1932 Rev. Mod. Phys. 4, 56.

Mulliken, R. S. and Stevens, S. 1933 Phys. Rev. 44, 720.

DESCRIPTION OF PLATES 7-8

Plate 7 (a, b) and Plate 8 (c, d) show an enlargement of part of the (0, 0) band. The scale is given in wave numbers. The key shows the assignment of the band lines to the various branches. Owing to lack of space all the branches are not represented on the key, the very weak ones being omitted. The branches which do not form heads are indicated on the key by lines drawn opposite the appropriate band lines on the picture. For the branches which form heads the lines running up to the head are represented by short lines depending from the horizontal lines and the lines returning from the head by short lines standing on the horizontal lines in the region where the two sets overlap. Beyond the region of overlap the lines are represented in the same manner as they are for the branches which do not form heads.

Nevin

